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1. INTRODUCTION

We call K-numbers the numbers defined by

n

) K,n) = Y ()™ (fﬁ) m .
=0

In [1, p. 249], the following results are given: K(k,n) = 0 for k <n and K(1,1) =
(—1)kk! . We shall study general K-numbers and shall complete the definition by writing
K(k,n) = 0 for k,n < 0. We shall use two results given in [1]:
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cf. p. 246, No. 3, and
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cf. p. 249.
The K-numbers are met in certain problems in combinatorics.

2. RECURRENCE RELATION

It will be observed in (1) that the term for m = 1 can be omitted since it is zero.

Consider
n+l
_ mfn+1 k
Kk,n +1) = ) (-1 ( m )m
m=0

and the difference
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where use has been made of the relation

(21) = (5) (=)

But

so that
n+1
3 1 mfn+1 k+1 _
S_mz(_l) (m)m =Kk+1,n+1)/@+1 ,
m=0

thus the K-numbers satisfy the recurrence relation,

(4) Kk +1,n+1) = @+1)[Kk, n+1 - Kik,n))
or
(4a1) Kk,n) = n[K(k - 1,n) - Kk - 1,n - 1)] .

3. NUMERICAL RESULTS

We observe that
1

(5) K@k,1) = 3 ™ (I}l)mk = 1.

m=0

Using the results of Section 1 and (4), we obtain the following table of K(k,n):

n
1 2 3 4 5 6 7

k
1 -1
2 -1
3 -1 6 -6
4 -1 14 -36 24
5 -1 30 -150 240 -120
6 -1 62 -540 1560 -1800 720
7 -1 126 -1806 8400 -16800 15120 -5040

4. HORIZONTAL SUMS

Consider the ""horizontal sum"
k kK n k k

S =3 Kk = > -n™ (11;11) mt = > (—1)mmk (Itrll) )
n=

n=0 n=0 m=0 m=
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and using (2)
k

_ m k+1

- T ome(501)
m=0

Let in (3)

then (3) becomes

k+1
" m+1_k k +1 _
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thus
k
(6) S = 3 Kk,n) = (nF .
n=0
5. GENERATING FUNCTION FOR THE K-NUMBERS
To find the generating function of the K-numbers, we use a technique given in [2]. We
have
(1) GK(k,n) = Y, K(]&,n)tk = un,t) ,
k=0
and

Y Kk + 1, 0t = aKk,n)/t = ul,t)/t
k=n-1
DKk +1,n + D5 = GG, n + 1/t = ut + 1, B/t = GKk + 1, n + 1) .

k=n
According to (4) it follows that
GKk +1,n+1) = (o + 1) [GKk, n + 1) - GK(k,n)]

or, substituting,
ul + 1, t)/t = (0 + Du@ + 1, t) - @ + Duln,t) ,

which shows that u(n,t) is a solution of the difference equation
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(8) [1 -t + DJul +1,t) +th + Duh,t) = 0 .

We solve (8) using the classical technique given in [2] and obtain

- (2t)(st) -+ - (nt) I 1 1
u(n:t) = (2t - 1)(3t — 1) T (nt — 1) u(l,t) = n.r (2 - T})u(l,t) r(n + 1 - T;').

According to (5), Kk,1) = -1, thus

a1t = Y Kk, D = - 3 & = t/6 - v, [t] <1,
k=1 k=1

thus substituting into u(n, t)

(9) uln,t) = GK(k,n)

nzr(l-lt) r(n+1—lt) ,

which is the generating function for the K-numbers.

6. QUASI-ORTHOGONAL NUMBERS OF THE K-NUMBERS

According to [3] and correcting an error committed there, since the K-numbers sat-

isfy a relation of the form

Bn=M(n+1)Bn +1 B®
k N@ + 1) k-1 N@ k-

where clearly (cf. (4a)), N() = -1/n, M(@) = (@ - 1)/n, so that, still according to [3] the
quasi-orthogonal numbers satisfy the relation

_ n n-1
A = M)A | + NKA_] 5

calling L(k,n) the numbers quasi-orthogonal to the numbers K(k,n), we have

10) Lo = E- ik -1, - k-1, -,

Through the quasi-orthogonality condition we get Lk,k) = (—l)k/k! , and since K(k,1) = -1
it follows that for k > 1,

> K(k,n) =0 .

n=1
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It will also be easily verified that L(k,1) = -1/k. We thus obtain the following table of val-
ues of Li(k,n):

n 1 2 3 4 5
k=

1 -1

2 -1/2 1/2

3 -1/3 1/2 -1/6

vy -1/4  11/24 -1/4 1/24

5 -1/5 5/12  -7/24 1/12  -1/120

7. RELATIONS TO STIRLING NUMBERS

We consider the numbers
k
wk,n) = (-1)"k! L{k,n) ,
k
Lk,n) = (-1)"w(k,n)/k!
By substituting into (10) we obtain
wk,n) = -k - Dotk - 1, n +wk -1,n - 1),
which is the recurrence relation for Stirling numbers of the first kind (cf. [2, p. 143]).
Since w(1,1) = 1 = St(1,1), w(2,1) = -1 = St(2,1), etc., it follows that w(k,n) = Stk,n),
the Stirling numbers of the first kind, thus

(12) Lk,n) = (-15Stk,n)/k!

Similarly it can be easily checked that the K-numbers are related to the Stirling numbers of

the second kind st(k,n) by the relation
(122) K(k,n) = (-1)"n!st(k,n)
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