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The Diophantine Equation 

(1) xf + • • • + xP - yp , 

where p is an odd prime number > 1 9 n ^ 2 and 1 < xA ^ • • • ^ xn 9 is known to possess 
general solutions for n = 2, p ~ 2; n = 3, p = 3; for other values of n and p , no gen-
eral solutions are known9 although computer searches for solutions of such equations can 
easily be carr ied through by assigning a value to y and n and then allowing the correspond-
ing x ! s to take all values from x t = • • • ' = x n * 1 to xA = • •• = x n = y - 1; in each case , 
different pr imes p are tested to see whether Eq. (1) is satisfied. The labor involved, how-
ever , is drastically reduced by realizing that for a given n and y possible pr imes p which 
can satisfy Eq. (1), have an upper bound, above which no solutions a re possible. This s ta te-
ment is a consequence of examining propert ies of the function \p which is defined by 

(2) i/r = (xj + . . . + x n ) / y , 

where y is given by Eq. (1)9 subject to the restr ict ions stated above. The relevant property 
of ip is given by the following: - 1̂  

Theorem. The function *// is bounded above by n p and below by (1 + 2p/y) or 1 
depending on whether the solution to Eq. (1) are integers or not, respectively. 

Proof of Theorem. From elementary calculus 

m 

and i|/ has a turning point when 

The conditions 

d* - 2-r & *** x. l 
i - i x 

gg - 0 (1 £ i s n) 

| i = 0 and | ± - 0 < * ' « 

resul t in the equations 

(3) xf + *. • + x? + . • • + x p - xf"1 (xA + • •• + x. + • • • + x n ) = 0 
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(4) x? + • • • + x? + •»• + x P - xP" 1 (xi + • • • + x. + • • • + x ) = 0 . v ' x l n l * I n 

Subtracting Eq. (3) from Eq. (4) gives the condition for a turning point as 

(5) xx - x2 « . . . = x n . 

1-1 
From which we deduce that max (t//) = n . The lower bound of x depends on whether the 
x»s a re restr ic ted to integers. Thus if the xfs a re non-integral, then we note that y p = 
xf + • • • + x p < (xi + • • • + x n ) p so that 1 < i/>. If the x ' s a re integers only, we use the 
little Fermat theorem x P = x. (mod p). But since (xP - x.) is even and p is odd by h y -
pothesis, it follows that x p s x. (mod 2p) and hence using Eq. (1) we deduce that xt + • • • 
+ x m s y (mod 2p) from which it follows immediately that y + 2p < xt + • • • + x . The 
case of p ^ i deserves special attention. Using the same reasoning as above, we obtain the 
inequality: _ 
(6) y + 2 < xx + ••• +x . < \l n y . 

Moreover, it is easy to derive solutions for the equation 

m 

for any n by using the well known general solution for n = 2 — i . e . , the identity (2ab)2 + 
(a2 - b2) = (a2 + b2) . Thus putting a = n, and b = n + 1, we obtain: 

(2n + I)2 + (2n(n + 1) )2 + (2n(n + 1) + l)2 . 

Now putting n = m (m + 1) and using Eq. (6) gives: 

(7) (2m + l ) 2 + (2U)2 + (2U(U + 1) )2 = (2U(U + 1) + l)2 , 

with U = m (m + 1). It is easy to use induction to show that this method gives an identity in 
m. We may write m = a/b and multiply throughout by b2 to obtain an identity in a and 
b. 


