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Usually the roots of polynomial equations of degree n become more difficult to find 
exactly as n increases , and for n ^ 5, no general formula can be applied. But, for c e r -
tain c lasses of polynomials, the roots can be derived by using hyperbolic trigonometric func-
tions. Here, we solve for the roots of Fibonacci and Lucas polynomials of degree n. 

The Fibonacci polynomials F (x), defined by 

Ft(x) = 1, F2(x) = x, Fn + 1(x) = xFn(x) + Fn_1(x) , 
and the Lucas polynomials L (x), 

Li(x) = x, L2(x) = x2 + 2, Ln + 1(x) = xLn(x) + L ^ f c s ) , 
have the auxiliary equation 

Y2 = xY + 1 

which a r i ses from the recurrence relation, and which has roots 

/nX x + 's/ x2 + 4 Q x - N/ x2 + 4 (1) a = s , P = ~ 9 

It can be shown by mathematical induction that 

n _n 
"n1"' a - B ' —nv (2) F (x) = 2-^4- • Ln(x> = «n + ^ 

The first few Fibonacci and Lucas polynomials are given in Table 1. Observe that, when 
x = 1, F (x) = F and L (x) = L , the n Fibonacci and Lucas numbers, respectively, 
See [1] for an introductory article on Fibonacci polynomials. 

Now, we develop formulae for finding the roots of any Fibonacci or Lucas polynomial 
equation using hyperbolic functions defined by 

sinh z = (e - e" ) /2 , cosh z = (e + e" )/2 
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Table 1 
Fibonacci and Lucas Polynomials 

F L (x) 
n n n 

x* + 2 
x3 + 3x 
x4 + 4x2 + 2 
x5 + 5x3 + 5x 
x6 + 6x4 + 9x2 + 2 
x7 + 7x5 + 14x3 + 7x 
x8 + 8x6 + 20x4 + 16x2 + 2 
x9 + 9x7 + 25x5 + 30x3 + 9x 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
X 

X 2 

X 3 

X 4 

X 5 

X 6 

X 7 

X 8 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

1 
2x 
3x2 + 1 
4x3 + 3x 
5x4 + 6x2 + 1 
6x5 + 10x3 + 4x 
7x6 + 15x4 + 10x2 + 1 

which satisfy, among many other identities, 

cosh2z - sinh2 z = 1 

cosh iy = cos y, sinh iy = i sin y 

If we let x = 2 sinh z, then v x2 + 4 = 2 cosh z, and from (1), a = cosh z + sinh z = 
e while jS = sinh z - cosh z = - e " . Then, 

Thus 

(3) 

n fln zn / lXn -nz 
F (x) = a - g = e - <-» e 

a - P e
z + e " z 

T / v n , 0n nz , / lVn -nz 
L (x) = a + j8 = e + (-1) e 

p /v\ = sinh 2nz , , = cosh (2n + l ) z 
J 2 n w c o s h z ' J 2 n + l w cosh z 

L 2 / v = 2 cosh 2nz, L (x) = 2 sinh (2n + l)z . 

Now, clearly the polynomial equation equals zero when the corresponding hyperbolic 
function vanishes. For z = x + iy (see [2] , p. 55) 

I sinh z |2 = sinh2 x + sin2 y 

|cosh z |2 = sinh2 x + cos2 y . 

Thus, since for real x, sinh x = 0 if and only if x = 0, this implies that the zeroes of 
sinh z are those of sinh iy = i sin y, and the zeroes of cosh z are the zeroes of cosh iy = 
c o s y . Thus, we can easily find the zTs necessary and sufficient for F (x) and L (x) to 
be zero. 
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Example. F2n(x) = 0 implies that sinh 2nz = 0, cosh z ^ 0, so that sin 2ny = 0, 
cos y i 0, so 2ny = k77 and z = iy. Thus, x = + 2i sin k77/2n, k = 0, 1, 2, • •• , n - 1. 
Specifically, the zeroes of F6(x) are given by x = +2i sin k77/6, k = 0, 1, 2, so that x = 
0, ±i, ±iN/3. As a check, since F6(x) = x(x2 + i)(x

2 + 3), we can see that the formula is 
working. 

F 2 1(x) = 0 only if cosh (2n + l)z = 0, cosh z f 0, or when cosh (2n + l)iy = 
cos (2n + l)y = 0, cos y f 0. Then, (2n + l)y = (2k + l)7r/2, SO that 

. i(2k + 1)77 
Z l y (2n + 1)2 ' 

so that 
, 0 . . / 2 k + l \ 77 , A T -, 

x = +2i sm I , J • rr , k = 0, 1, • •• , n - 1 . 

To summarize, taking x = 2 sinh z leads to the following solutions: 

F2n(x) = 0 : x = ± 2i sin —• , k = 0, 1, • • • , n - 1 

F 2 n + 1 (x) = 0 : x = ± 2i sin f | ^ 4 J • ^ , k = 0, 1, • • • , n - 1 / 2 k + l \ 77 
"^2n + iy 2 : 

/2k + l \ £ 
\ 2n j ' 2 : L2n(x) = 0 : x = ± 2i sin I—57— ) • - , k = 0, 1, • • • , n - 1 

k7T 
L 2 n + l ( x ) = 0 : X = ± 2 i s i n 2 ^ T T ' k = 0, l , . . - . n - l . 

Compare with Webb and Pa rbe r ry [3]. 
Suppose that, on the other hand, we s tar t over again with x = 2i cosh z so that 

N/ x2 + 4 = 2i sinh z, and a = i e z , /3 = ie" Z . Then, by (2), 

- / zn - z n \ / 
^ . v .n-11 e - e \ _ .(n- 1) sinh nz 

sinh z \ e - e / 

(4) 
L (x) = enz + e " n z = 2 - i n c o s h n z . n 

Now this looks better. For the Fibonacci polynomials, F (x) = 0 when sinh nz = 0, sinh z 
^ 0. Since sinh nz = 0 if and only if sin ny = 0 or when z = iy, we must have ny = ±k77 
so that z = ±ik77/n. Since i cosh iy = i cos y, x = 2i cosh z = 2i cos k77/n, k = 1, 2, • • • , 
n - 1 . 

Now, for the Lucas polynomials, L (x) = cosh nz = 0 if and only if cos ny = 0, or 
when ny is an odd multiple of 77/2, and again z = iy, so that x = 2i cosh z becomes 
x = 2i cos (2k + l)77/2n, k = 0, 1, • • • , n - 1. 

To summarize, taking x = 2 cosh z leads to the following solutions: 
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F (x) = 0 : x = 2i cos — k = 1, 2, • * * , n - 1 
n n 

L (x) = 0 : x = 2i cos ( 2 k
0

+ 1)7T , k = 0, 1, • • • , n - 1 n 2n 

Actually, there is another way, using F 0 (x) = F (x)L (x). Now, if we can solve 
aXi n n = 0, then the roots of L (x) a re those n 

Please note how this agrees with our resul ts : 
F (x) = 0, then the roots of L (x) a re those roots of F 9 (x) which are not roots of F (x) m n uW n 

F2 n(x) = 0 x = 2i cos ^ , k = 1, 2, ' ' • , 2n - 1 

Fn(x) = 0 x = 2i cos %& , j = 1, 2, • • • , n - 1 

Ln(x) = 0 x = 2i cos ( 2 j
2

+
n

1 ) 7 r , j = 0, 1, • • • , n - 1 . 

Thus the roots separate each other. 
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