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1. INTRODUCTION 

It is known that reflections of light rays within two glass plates can be expressed in 
te rms of the Fibonacci numbers as mentioned by Moser [ l ] . Here , we will explore what 
happens when the number of glass plates is increased. As will be seen, a new set of s e -
quences and polynomials a r i ses . 

Assume that one s ta r t s with a single light ray and that the surfaces of the glass plates 
a re ha l f -mi r rors , such that they both t ransmit and reflect light. The initial reflection, as a 
light ray enters the stack of plates, is ignored. Let P(n,k) be the number of possible d i s -
tinct light paths, where n is the number of reflections and k the number of plates. Figure 
1 i l lustrates the part icular case of two glass plates for n = 0, 1, 2, and 3, where we a l -
ready know that the possible light paths resul t in the Fibonacci numbers. The dots on the 
upper surface in this figure indicate the s tar t of a light ray for a distinct possible path for 
each part icular number of reflections. 

I\iy^vi 
P ( 0 , 2 ) = l P ( l , 2 , ) = 2 P ( 2 , 2 ) = 3 

P ( 3 , 2 ) = 5 

Figure 1 

We will now derive a matr ix equation which relates the number of distinct reflected 
paths to the number of reflections and to the number of glass plates and examine a sequence 
of polynomials arising from the characteris t ic equations of these matr ices . 
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2. THE k X k MATRIX Qfe 

Consider the bundle of distinct paths along which each light ray has been reflected ex-
actly n times in a collection of k glass plates , as shown in Fig. 2. Let Q(n,i) be the 
number of rays added by reflection to the bundle at the surface i , l < i < k, at which 
point the rays make the n reflection. Since the number of rays emerging from the stack 
of k plates after exactly n reflections is identical to the number of possible distinct light 
paths for n reflections, 
(1) P(n,k) = Q(n,k) for all n and k . 

n+1 r e f l e c t i o n s 

Q ( n , 0 ) 

Q (n, 1) 

Q (n, 2) 

Q (n+ l , k ) 

Q (n+1 ,k-1) 

Q ( n + l , k - 2 ) 

Q (n, k-1) 

Q (n, k) 

Q (n+1, 1) 

Q (n+1, 0) 

n r e f l e c t i o n s 

Figure 2 

From Figure 2, the following set of equations is then obtained: 

Q(n + 1, k) = Q(n,k) + Q(n, k - 1) + • • • + Q(n,2) + Q(n,l) 

Q(n + 1, k - 1) = Q(n,k) + Q(n, k - 1) + • • • + Q(n,2) 

Q(n + 1, 2) = Q(n,k) + Q(n, k - 1 ) 

Q(n + 1, 1) = Q(n,k) 

We can write this set of equations as a matr ix equation, 

(2) 

Q(n + 1, k) 1 

Q(n + 1, k - 1) 

Q(n + 1, 2) 

Q(n + 1, 1) 1 
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| |Q(n,k) 

Q(n, k - 1 ) 

Q(n, 2) 

IIQ(n, 1) 

and define Q, as the square matr ix of order k which a r i ses with i ts elements above and on 
the minor diagonal all ones and with all zeros below the minor diagonal^ 
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(3) Q,, 
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0 k X k 

Next, we find a recursion relation for the characteris t ic polynomials for the matr ices 
Qk . We let 

(4) Dk(y) = det(Qk - y y , 

where Q, i s given by (3) and I, i s the identity matr ix of o rder k. We display Eq. (4) as 

(5) D j y ) = 

| i - y 
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The determinant on the right side of (5) is now modified by subtracting row 2 from row 1, 
after which column 2 is subtracted, resulting in (6): 

(6) 

- 2 y 
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- y k X k 

This determinant (6) is then expanded by the elements in the f irst column, giving 

(7) D,(y) = (-2y)Ai - yA2 + ( - l ) k + 1 A 3 , 

where Al9 A2, and A3 are cofactors still to be evaluated. When AA and A3 are expanded 
by the elements in their las t row and column, respectively, they become At = -yD. Q(y) and 

k_ A3 = (-1) JD, 2(y). If the determinant A2 is expanded according to the elements of its f i rs t 
row, the resulting determinant according to the elements of its las t row, and finally this new 
determinant according to the elements of its las t row, one finds A2 = y3^^ ^(y)* The above 
expressions for Al9 A2, and A3 are then substituted into Eq. (7), which yields the result 
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(8) Dk(y) = (2y2 - l)Dk_2(y) - y*Dk_4(y) , 

the desired recursion formulas for the polynomials D, (y) for all k ^ 1. 

3. THE COEFFICIENTS OF D (y) AND RECURSION FORMULAS FOR P(n,k) 

The polynomials D (y) can be expanded in power ser ies in y as 

(9) Dn^=SAn,iy n-i 
A • y 

n , i J 

i=0 

where A . a re constants. By substituting these power se r ies into the recursion formula (8) 
and equating coefficients of like powers of y, the following recursion relation among the co-
efficients are obtained: 

(10) A . = 2A 0 . - A 0 . 0 - A . . , 0 < i < n , 
n , i n - 2 , i n -2 , i - 2 n -4 , i ' ' 

where we take A . = 0 whenever i < 0 or n < i. For n = 2, 4 , 6 and n = 1, 3, 5, 
one obtains from the recursion formula (8), 

D2(y) = y2 - y - 1 

D4(y) = y 4 - 2 y 3 - 3 y 2 + y + l 

D6(y) = y6 - 3y5 - 6V4 + 4y3 + 5y2 - y - 1 

Di(y) = -y + 1 

D3(y) = -y3 + 2V2 + y - 1 

D5(y) = -y5 + 3V4 + 3V3 - 4y2 - y + 1 . 

The coefficients A . can now be evaluated by using the above polynomials and recursion n, l 
relat ions, resulting in the set of specific formulas in addition to those of (10): 

A 2 n , 0 " X 

A 0 n = -n 2 n , l 

2n,2n = A 2 n , 2 n - 1 = ^ 

A 2n ,2n-2 = ^ ^ " « 

A 2n ,2n -3 = ^ ' ^ ~ 2> 

A2n+1,0 _ 1 

A 0 ,- - = n + l 2n+l, 1 
A - A - ( D n + 1 

2n+l,2n 2n+l,2n+l y~ ' 

A 2 n + l , 2 n - l = ^ " ^ 

A 2 n + l , 2 n - 2 = ^ 2 » " « • 

These sets of formulas for the coefficients will then permit one to write the polynomials 
D (y) as power se r ies in y, which is very useful in obtaining recursion formulas for P(n,k). 
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If we let Dn(y) = 0 in the power se r ies expansion (9), the resulting equation implies 
that 

(11) ^ A M P ( n - i , k) = 0 
i=0 

for all k. Then, Eq. (11) is the recursion relation for the numbers P(n,k), and for k ^ 5, 
we can write 

P(n + 1, 1) = P(n , l ) 

P(n + 2, 2) = P(n + 1, 2) + P(n,2) 

P(n + 3, 3) = 2P(n + 2, 3) + P(n + 1, 3) - P(n,3) 

P(n + 4, 4) = 2P(n + 3, 4) + 3P(n + 2, 4) - P(n + 1, 4) - P(n,4) 

P(n + 5, 5) = 3P(n + 4, 5) + 3P(n + 3, 5) - 4P(n + 2, 5) - P(n + 1, 5) + P(n, 5) . 

4. A GENERATING FUNCTION FOR THE POLYNOMIALS D (y) 

Theorem 1. A generating function for D (y) is 

oo 

(12) [ 1 - y(y + l ) t ] [ l - (2y2 - l) t + y H 2 ] - 1 = £ T>2n(j)t'1 ' 
n=0 

Proof. In Eq. (12), multiply both sides by the denominator on the left side to obtain 

(13) 1 - y(y + l)t = [1 - (2y2 - l)t + y*t2] • J ] D^ttfl? 
n=0 

= D0(y) + [D,(y) - (2y* - l)D0(y)]t 

+ E [D2n+4^ " (2y2 " 1)D2n+2(y) + ^ n ^ 

Equating like powers of t on the left and right sides of Eq. (13), one obtains 

D0(y) = 1 

D2(y) = (2y2 - l)D0(y) - y(y + 1) = y2 - y - 1 

D2 n + 4(y) = (2y* - DD2 n + 2(y) - ^ ( y ) 
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Since these las t three equations a re in full agreement with the recursion formulas derived 
ea r l i e r , one concludes that the theorem has been proved. 

Theorem 2. A generating function for D _ (y) is 

OO 

(14) [y + l - y ^ H i - (2y2 - i)t + y V ] " 1 = £ i>2n+1(yHn . 
n=0 

The proof of this theorem readily follows if one uses the same procedure as in proving the 
preceding theorem. 

The generating functions of Eqs. (12) and (14) can be used to obtain closed form solu-
tions for D (y) and D (y) with the aid of the following equations from Rainville [2]: 

(i5) (i - Z)"a = E ^ 
n=0 

(16) 

(17) 

n 
(ft)n = T T ( a + k - 1) = a(a + l)(a + 2) • • • (a + n - 1), n 2= 1 , 

k=l 

(a)0 = 1, a ± 0 . 

<*> n / <*> [n/2] v 

n=0 k=0 ^ ' n=0 k=0 \ ' 

By applying Eqs. (15) and (17) to the denominator of Eq. (12), 

[1 - (2y2 - l)t + yH2]""1 = £ [ ( D n / n ! ] [ (2y2 - l ) t - y*t2] n 

n=0 

(18) = >J > - ( - i r K l ( 2 y 2 - i ) n - V k t n + k 

n=0 k=0 

[n/2] 
E E (-i>k(nkkV-i>n"2Vktn 

n=0 k=0 \ / 

Hence, 
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t ] [ l -

[n/2] 

[l - y(y + l ) t ] [ l - ( 2 / - l ) t + y*t2f 

(19) n=l k=0 \ / 

<*> [(n-l)/2] 

k \ in, ^ n - 2 k 4k ,n , ., 
k ] (2y - 1) y t + 1 2 £ ^k(n 

n=l k=0 \ 

& + D S n £ ^ ("1)k(n " k " ')(2^ " D ^ W 
n=l k=0 > 

Now 

(20) 2 D 2n ( y ) t n = E D 2 n ( ^ + * 
n=0 n=l 

Therefore, by equating coefficients of like powers of t in Eq. (12), a closed-form solution 

[n/2] 
for D ? (y) is extracted: 

D 2 n ( ^ = E ^h^^'^'^y^ 
k=0 ^ ' 

( 2 1 ) [(n-D/2] 
/ , i\ V * / i \ k / n - k - l \ / r > 2 - n - 2 k - l 4k 

y(y + D 2 ^ ^ ( k f y " x ) y ' 
k=o \ / 

The closed-form solution for D (y) follows readily from the above derivation, 

[n/2] / x 
D 2 n , l ^ = ^ « E ^ n k k ^ - « 

k=0 ' 

2 ^ n - 2 k y 4 k 

( 2 2 ) [(n-l)/2] , v 

-y» E ( - W n " J " 1 ) « y 1 - « n " 2 t l y 4 k -
k=0 > ' 
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