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In the present paper, it is shown that the main theorem in [1] , see p. 484, can be e s -
tablished by using one of J. G. van der Corput?s difference theorems [2]. Moreover, by 
using a theorem of C. L VandenEynden [3] we show the property that the sequence of the 
integral par ts of the logarithms of the recursive sequence under consideration is also uni-
formly distributed modulo m for any integer m > 2. 

Lemma 1. Let (x ), n = 1, 2, • • • , be a sequence of real numbers. If 

l im (x , - - x ) = a , n —• oo n+1 n ' 

a i r rat ional , then (x ) is u. d. mod 1 ( [2 ] , p. 378). 
Lemma 2. Let (x ), n = 1, 2, • • • , be a sequence of real numbers. Assume that 

the sequence (x / m ) , n = 1, 2, • • • , is u. d. mod 1 for all integers m > 2. Then the 
sequence of the integral parts ([x ] ), n = 1, 2, • • • , is u. d. mod m [3] . 

For the notion of uniform distribution modulo m we refer to [ 4 ] . 
Theorem. Let (V ), n = 1, 2, • * • , be a sequence generated by the recursion relation 

(1) V ^ = a. nV _,_. , + • • • + a-V _,, + a„V , n > 1 , 
n+k k-1 n+k-1 1 n+1 O n ' ' 

where a0, al5 • • • , a^_^ a re non-negative rational coefficients with a0 f- 0, k is a fixed 
integer, and 

(2) Vt = n . V2 = y2, • • • , Vk = y k 

a re given positive values for the initial t e rms . It is assumed that the polynomial 

k k-1 
x — aj i x _ . . • _ a-jx — an 

has k distinct real roots j3ls /32, • • • , jS^ satisfying 0 < | j3, | < • • • < | /3, | and such that 
none of the roots has magnitude equal to 1. Then: 

1. The sequence (log V ), n = 1, 2, ••• , is u. d. mod 1 [ l ] . 
2. The sequence ([log V ] ) , n = 1, 2, • •* , is u. d. 
Proof. By (1) and (2), we have that 
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k 

3=1 

where the coefficients av a2i • • • , a^ a re uniquely determined by assumption (2). Let p 
be the larges t value of j for which a. f- 0. We have p > 1. Hence 

P 
V = Y a. $ . n Z J ] K ] 

j=l 
Now 

,7 „ ^n+1 . , /?n+l V ,n »i^i + • • • + ct P n+1 i r i p p n 
—— = 5 ; — ^Ha -* ^ D a s n~*°° ' 

Vn QfijSf + . . . + a f p 

1 1 p p 
since jSj | jS —• 0 (as n—»oo), i = 1, 2, • • • , p - 1, because of the conditions on the abso-
lute values of the p.. (From the conditions follows that p > 0.) Hence we have that 

l o g v
n + 1 - l o g V n - » log/3 , as n->oo • 

The number j3 is algebraic and therefore log j3 is an irrational number (see [ l ] ) . Hence 
Lemma 1 applies and we obtain that the sequence (log V ) is u. d. mod 1. This proves 
Duncan and Brown's result. 

In order to show the second part of the theorem we observe that for every integer m ^ 2 

logV ,- logV p 
& n+1 & n *p 

-* _x. as n—• oo , 
m m m 

hence the sequence ((log V ) /m) , n = 1, 2, ••• is u. d. mod 1, and according to Lemma 
2 we obtain that the sequence of the integral par ts ([log V ] ) is u. d. mod m for every 
integer m > 2. 

Remark. By restr ict ing the order of the recurrence we may relax the conditions on the 
coefficients a. and the initial values of V . The values of elements of (V ) can be nega-
tive in that case , and so we obtain a result regarding the logarithms of the absolute value cf 

V 
Let (V ), n = 1, 2, • • • , be a sequence generated by the recurrence 

n+2 1 n+1 0 n 

where Vj = y1} V2 = y2- W e assume that yl9 y2, a0 and aA are rational numbers, where 
Yi and y2

 a r e ^ ° J a n d fy a n ( i a i not both 0. Moreover, it is assumed that the poly-
nomial x2 - aAx - a0 has distinct real roots , jS1 and j32, one of which has an absolute value 
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different from 1. Then the sequence (loglv J ) is u. d. mod 1, and the sequence of inte-
gral par ts ([log|V !]) is u. d. 

Proof. We have 

_ (72 - T i ^ f " 1 - (72 - lih^T1 

V n - _ j g — p - , 

where 
Pi = H a i + ^ l + 4a 0 ) , j32 = \(^ - ^ + 4a0) 

Now 

log | v n + 1 | - l o g | v n | = log n+1 
(72 - 7ihWi - (72 - 7 i i W 

(72 - YiMPT1 - (72 - 7ii3i)i32
1-1 

We may suppose that \pt\ -f 1, |j32 /pt\ < 1. 
Since log |V + 11 - log |v l - ^ l o g l i S j as n—•co, and as IjSj is algebraic when fit is 

algebraic, we may complete the proof in the same way as done above. 
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ERRATA 
Please make the following changes in the ar t ic le , "A Triangle with Integral Sides and 

A r e a , " by H. W. Gould, appearing in Vol. 11, No. 1, pp. 27-39. 
Page 28, line 3 from bottom: For + u - v\fS) read + (u - W*3). 

K2 
Page 31, Eq. (11): For — 

a2 

Page 31, line 6 from bottom: For 4x2 - 3y2 

Page 33, Eq. (17): For r2^ 
Page 33, Eq. (22): For r c : , 6 , 14 
Page 35, Line 13: For i. e. 
Page 35, Line 16: F o r N = orthocenter read H = orthocenter. 
Page 35, line 9 from bottom: For |l = H | 2 read |l - H | 2 . 
Page 36, line 12 from bottom: For residue read radius . 
Page 39, Ref. 4. Underline Jahrbuch uber die. 
Page 39, Ref. 4. Closed quotes should follow sind rather than Dreieck. 
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