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r 
Let M denote the number of normalized (first row in natural order) r X n. Latin r e c -

tangles , M1 = 1 for all n. The M2 are the rencontre numbers [ l ] . Several methods are 
available for computing the M3 [ l , 2, 3 ] . In this report , a procedure is presented that is 

r effective in finding M for r < 4. 

CALCULATION OF M2 AND GENERAL FORMULA FOR M r 
n n 

Consider the diagram (Fig. 1, drawn, as are all the diagrams, for n = 5) consisting 
of an n x n square, made up of n2 cells arranged in n rows and n columns. Label each 
cell with the numerical indices giving its position in the square, writing them as a one-column 
matrix with the row index at the top, and mark those cells whose 2 indices are different. 
Call the marked cells good, the others bad. (For any r , the cells called good will be those 
with all indices different.) Now nexpandn the diagram into " t e r m s " by taking one cell from 
each row and each column, keeping the row indices in natural order . Each term then cor -
responds uniquely to a 2 X n rectangular a r r ay whose first row is in natural order; a term 
made up entirely of good cells corresponds to a normalized Latin rectangle. M2 is the num-
ber of such "all-good" te rms in the expansion. Using the principle of inclusion and exclusion, 
one can read off M2 from the diagram at sight (cf [4]). The expression so obtained is f o r m -
ula (1), below, with A k = n ( k ) , where n ( k ) = n(n - l)(n - 2) - • • (n - k + 1). 

r , n 
For r > 2, one can prepare an analogous diagram of an r-dimensional hypercube (e. g. , 

Figs. 2 and 4), referred to in this report as the n r - cube , and obtain the formula, valid for all 
r > 0. 

n A k 
(1) M^ = ^ ( - l ) k - » £ £ [ ( n - k ) ! ] ^ 1 . 

k=0 

Here A denotes the number of k-tuples in the expansion of the n r -cube . (The word k-r , n 
tuple, in this report , will always mean an ordered set of k bad cel ls , no two of which are 
from the same dimensional level.) A0 = 1 for all r and all n, by definition. 

r ,n 

CALCULATION OF M3 
n 

The diagram is shown in Fig. 2. The layers are numbered from left to right and the 
indices a re written in the order : layer , row, column. (Column matr ices of indices will be 
written in the form (a,b,c) f for typographical convenience.) There are two types of bad 
cel ls : a 1 -ce l ls , having all 3 indices alike, and /3f-cells, having exactly 2 indices alike. The 
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Fig. 4 54-Cube (which is also the 54 - #-Cube. (Good cells outlined and cross-hatched.) 



1973] A PROCEDURE FOR THE ENUMERATION OF 4 Xn LATIN RECTANGLES 243 

Table 1 
Formulas for the o> k 

(Formulas are valid for k >. 0 and for n as indicated. See text for k = 0. Except 
i k 

for a\9 all co a re 0 for k > 0 and for values of n > 0 not covered by the formulas.) 

ak = n{ak-] + (n - l ) ^ ^ - * + 3 y k ^ + 6(n - 2 ) 6 k " ^ ] i n ( n -1 L n-1 n-1 n - l j / 

ak - 3k(n - l)(n - 2)Sk~* n n-1 

« i -
yk = fP - k(n - l)(n - 2)(2ij£:J- ^ i j ) 

3 k - k(n - 2)[2(0fci +\fcl - 8 ^ ) 
+ (n- 3)^fcl + 2^ : l -«fcl>] 

(n + l ) ( 4 )
€

k = (n - k + l ) 4 « k 

' n n+1 

k+1 
c n+l 

^n = ^ n - k ( n - ^ [ 2 ^ 1 + (n " 2)8n-l] 

.k-1 k-l> 

Xk = 6 k - 2k n n 

+ ^ I i + (n -3)^ :1+fg : t> 

Kl+ (n -2) k-1 + k-1 + k-1 
' n - 1 n -1 n-1 

+ (n - 3)^=1]} 

fi = ek - 2k{ 2 <: i +Xfcl, + (n - 3 ) [*£J + 2 ^ 

3(n - l)(n - 2)f* 

, k = ^k - 3k(n - 2) [ 2 ^ + (n - 3 w £ j 

ak + 2(2n - l)j3k + 3nyk + (6n - 3k) (n - 1)8 k 

+ 3(n-2)Mk
+, k]} 

n(4)77k = (n - k + l ) ^ k
+ 1 - (3k+J - n(n - l ) [ 3 5 k + (n - 2)(ek + 3/*S)] 

(n a 2) 

(a{ - 1) 

(n a 1) 

(n ^ 1) 

(n 2= 2) 

(n ^ 3) 

(n ^ 1) 
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(n a 2) 

(n > 2) 

(n 

(n 
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(n s 3) 

(n a 4) 



244 A PROCEDURE FOR THE ENUMERATION OF 4 X n LATIN RECTANGLES [Oct. 

good cells (not needed in the calculations when r = 3) a re e f-cel ls . The numbers of each 
cell-type in any layer a re easily ascertained. 

Letting w! stand for either of a*9 /3!, denote as an n3 -w ' -cube the cube that is ob-
tained when all cells in the layer , row and column occupied by a chosen u?-cell of the 
(n + l)3-cube are removed and the remaining par ts of the diagram are allowed to collapse up-
on themselves (i.e., "ranks are closed"), the good or bad nature of each cell being preserved. 
Let w! denote the number of k-tuples in an n3 - uf-cube. I t i s apparent that the n3 - a1-cube 
is identical with the n3-cube and that, for k > 1, 

(2) A k = a*k = n ^ k " ^ + 3n(n - l ) ^ f k " ^ . ' 3,n n n -1 r n -1 

(a*1 = n3 - n and j3fl = a%1 - 2(n - 1), by direct count in the diagram.) 

To find j3f , we can clearly use any j3f-cell in the (n + l)3-cube. Choosing (2 ,1 ,1) ' , 
we get the n3 - j3f-cube of Fig. 3. It differs from the n3 - a f-cube only in the first layer , all 
the differing cells being /3f-cells in the n 3 - a%-cubes. Accordingly, 

(3) j3*k = a? k - 2k(n - 1)^~\ . 
.n n r n -1 

The factor k in the second term on the right enters because of the way in which Mk-tuple" 
has been defined. 

All A can now be calculated, for any given n; when they a re substituted in (1), 
M3 is obtained. 

n CALCULATION OF M^ 
The diagram for the n4-cube is shown in Fig. 4. The dimensional levels are to be 

written in the order: s t r ipe, bar , row, column; the intersection of s tr ipes a and b is called 
the field [ a , b ] . The procedure is analogous to that used above for the case r = 3. There 
a re now, besides the good or e-cel ls , four kinds of bad cells: a -ce l l s , with all indices alike; 
/3-cells, with exactly three indices alike; / - c e l l s , with two distinct pa i rs of like indices, and 
S-cells , with exactly two indices alike. 

The numbers of cells of each type are again easily found, and we have at once the form-
k k k 

ula for A 4 > n = an given in Table 1. j3n is obtained from the n4-j3-cube resulting from 
choosing ( 2 , l , l , l ) f in the (n + l)4-cube (second formula in Table 1), just as j3!

n was ob-
k k 

tained in the case r = 3. y and 5 are not so immediate, but can be found by the method 
' n n J 

outlined below. 
We first analyze the n4 - /3-cube much as we did the n4 - a-cube. That is to say, we 

study the types and topographical distributions of the second members of those pai rs of cells 
of the (n + l)4-cube whose first member is a selected j8-cell. The /3-cell chosen in the 
(n + l)4-cube to obtain the resul ts shown in Fig. 5 is (2 ,1 , l , l ) f . It is useful to observe that, 
in a pair of columns of indices, the two numbers in a row maybe interchanged without affect-
ing the propert ies in which we are interested. There prove to be 13 different cell- types, in-
cluding the five already observed. They are designated by Greek le t t e r s , as shown in Fig. 5. 
(The cells in the first stripe all retain the same designations they had in the n4 - a-cube; 
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Fig= 5 54 - jS-Cube after ( 2 , 1 , 1 , l ) f . (Good cells outlined and cross-hatched.) 
x indicates new good cell; o indicates where good cell i s to be inserted to get 

k k 
y 5 . * indicates where good cell is to be inserted to get 85 (see text), 

each of the lower s tr ipes has the same numbers of cells of types j3, f, • • • 9ir as the second 
s t r ipe, but distributed differently.) 

Now, to find y , note that the n4 - y - c u b e that results from choosing (2,2,1,1) f can 
be obtained from the n4 - /3-cube (Fig. 5) by removing all the good cells from the field [ l , l ] 
and inserting good cells at those places in the first bar indicated with o in the diagram. This 
leads to the third formula in Table 1. 

To get 6 n , choose (2, n + 1, 1 l)f and, in the resulting n4 - 5 - c u b e jump the first 
bar over all the others , so that it becomes the n bar (this will not affect the expansion of 
the cube). This adjusted n4 - 5 - c u b e may be obtained from the n4 - j3-cube of Fig. 5 by r e -
moving all the good cells in [ l ,n ] and inserting good cells at the places in the n"1 bar in-
dicated with *. Thus the fourth formula of Table 1 is obtained. 
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€ i s found by considering all (rather than only the bad) cells of the n4-cube,and p ro -
ceeding as in the derivation of a^ . 

Formulas for £ , • • • , Tig remain to be derived, in order to make the resul ts for y 
and 8 effective. All but ^ j ^ and 7r^ may be found in the following way, AjJ being used as 
example. Choose an appropriate A-cell, such as (2 , l , 3 ,3 ) f in the (n + l ) 4 - j3-cube, noting 
that the chosen cell i s a 8-cell in the (n + I)4 - a-cube. Now adjust 8^ by correcting for the 
"new" good cel ls , marked x in Fig. 5 (i. e. , cells that are good in the /3-cube but bad in the 
a-cube). The cell pai rs that must be examined in this process all prove to be reducible to 
pa i rs of the kinds already introduced. There resu l t s , finally, the formula for A in Table 1. 
All the r e s t of the formulas of Table 1 except the last two a re derived in the same way. 

If the choice of the A-cell had been inappropriate ( e . g . , (2,2,3,3)f)> the procedure 
would have met an impasse and haive failed. This happens for all choices of £-cells and 77-
cel ls , £ can be found, however9 by equating the resul t already known for Pfi+± with that 
obtained by expanding the (n + I)4 - /3-cube in t e rms of the an, • • • , £] | , • • • , £^, 77ĵ . The 
la t ter expansion is analogous to that used to find a£, above, n^ i s found by using all , ra ther 
than only the bad, cells in the diagram, by analogy with the derivation of €̂ . There resul t 
the las t two formulas of Table 1. 

As an initial set of values for the recurrences of Table 1, one can use the a>°, whose 
values a re : for n > 3 , all o>° are 1; for n = 3, TT® is 0 and all others are 1; for 

n o 
n = 2, ejj, n\9 £\ and ff| a re 0 and all others are 1; for n *= 1, a§, Z^0, y j and 8J a re 
1 and all the r e s t a re 0, The o ^ can be checked by direct count in the appropriate diagram. 

k JL 
For any given n > 0, all the A, can now be calculated, and IVT can be found by 

substituting them in( l ) . Some enumerations of 4 Xn Latin rectangles obtained by the method 
here presented a re : 

:M| = 24 
M| = 1,344 
Mj = 393,120 
Mj = 155,185,920 
M$ = 143,432,634,240 . 
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