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1. INTRODUCTION

If the elements of continued fraction-oriented physical and mathematical systems are
systematically arranged with respect to subscripts attached to the elements, the choice of
order and parity for the subscripts often leads to easily implemented algorithms for the com-
binatorial determination of the subscripts. All the essential information of the problem can
be carried by the subscripts since integer manipulation of the subscripts can substitute for
algebraic manipulation of the elements of the system. Specific and general setsof subscripts
are discussed, together with the application of Fibonacci methods for the counting of members
of subscript sets.

2. "BASIC'" SUBSCRIPT SETS AND THEIR GENERATION

The Euler-Minding formulas are introduced early in Perron's classic '"Die Lehre von
den Kettenbriichen' [1] and figure prominently in much of the subsequent continued fraction
discussions. If Perron's notation is altered slightly to eliminate (for convenience) the zero
subscript, the Euler-Minding formulas appear as
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There are [%] summations plus the one in the parentheses of (1) and [-n—é—l] summations

plus the one in the parentheses of (2).*

*The brackets specify the largest integer less than or equal to the number bracketed.
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By letting the c's of (1) and (2) assume particular values, the ratio Sn /Tn—l can be
used to describe various rational fraction forms of continued fractions some of which are
directly related to physical structures. For example, if the c's are all equal to one, the

ratio S, /Tn— is the rational fraction equivalent of the continued fraction [1]

1
S
1 1 1 _ n
(3 a1+a2+a3+"' +a - T, ]

More concretely, for n equal five,
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(4)

asa232921 + (agasag + asaay + agayay + agapag) + (ag + ag + ay)

Q52,2589 + (234 + Ay + Aga9) + 1
534238 534 532 322

Salzer [2] in an interpolation problem sets all c's equal to (x - x;) in the ratio S, /Tn-l
and uses the continued fraction process to retrieve a;, a3, **-. As a further example, by
letting the c's equal the complex frequency variable s = o + jo, the impedance or admit-
tance of two-element kind electrical ladder networks can be described by Sn /Tn—l' For in-

stance, the resistance-capacitance network
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has the Sn /Tn-l ratio [3]
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(5) Y, .(s) =
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It is seen that the ascending subscript arrangement in the continued fraction of (4) and
in the physical network above both lead to rational fractions having numerators and denomin-
ators with sums of products of n or less coefficients with the sums of products of no coef-
ficients being interpreted as the numeric one. Features immediately apparent with each
sum of h coefficients are the lexicographical order of subscripts, the absence of repeats,

and the presence of a leading a2, ca

1 %41oh and a final apdy 4 """ 2y or ah+1ah ety
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It is seen that equationwise all the information needed for the construction of the rational
fraction is contained in the subscripts alone.

The subscripts of the coefficients of a sum of products of h coefficients thus constitute
a subscript set. The numerator and denominator of the rational fraction can therebybe rep-
resented as a collection of subscript sets. Because of the basic nature of (3) and because of
the basic role played by the subscripts exemplified by (4) in specifying properties of more
general subscript sets, the subscripts of a sum of products of h coefficients determined
from a continued fraction as in (3) are called basic subscript sets and are given the symbol

{Nﬁ} where n is the largest subscript of the set, h is the number coefficients in each
product, and the 0 subscript on the braces identifies the set as '"basic.' A typical basic
subscript set from (4) is {5, 4, 3; 5, 4, 13 5, 2, 1; 3, 2, 1}

What are the precise properties of basic subscript sets? How can they be generated
eagily, and what is the power of a basic subscript set? A discussion follows.

Congsider a sequence of h non-zero, non-repeating integers, called subscripts. The
subscripts in the sequence are arranged in alternating parity and descending size with the
largest subscript (on the left) assigned a specific parity. A basic subscript set has as mem-
bers all possible such sequences with the largest subscript in any sequence not exceeding n.

The subscript sets are represented as

n/2
(6) {Nﬁ}o = {Nﬁ:%f—l} , n even,
f=0
(n-1)/2
™ () = [ @-20, (M), nodd.
f=0

{No} stands for no subscripts and is associated with the numeric one or a single term with
no coefflClents (See, for example, the denominators of (4) and (5).) {Nk} for k> n is
the null set with no value. The boxed semicolon ﬂ is a symbol for collecting the sequences
of a subscript set.

If n is odd (even), the largest subscript of any sequence has odd (even) parity. The
smallest subscript of any sequence has odd (even) parity if n-h +1 is odd (even).

From (6) and (7), it can be determined that the starting* sequence-last sequence pair
of {Nﬁ}o assume either (8) and (9) or (10) and (11).

(8) n,n-1,n-2,"*,n-h+1

. n-h+1 odd
(9) h,h-1,h-2,°-,1

*No other sequence with the prescribed properties can be found which has a larger subscript
in a given position than the subscript in that position in the starting sequence. If '"less than"
is substituted for "larger than,' the last sequence is described.
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(10) n,n-1,n-2,+++,n-h+1
, h —=h+1 even.
(11) h+1,h,h-1, -, 2

Note that the difference between given position subscripts in the starting and last sequences
is a constant q, where q = (n-h) for (n-h)+1 oddand q = (n-h-1) for (n-h) +1
even. In either case, q is even. This is a property which is valid for the more general
subscript sets discussed later.

An algorithm to generate basic subscript sets can be deduced from an inspection of (1)
and (2) once the starting and last sequence have been established. Assume that the fth mem-
ber of a subscript set is known. To find the (f + 1)St member, start at the right side of the
fth member and scan the subscripts toward the left until the first subscript is found which
has a value of at least two greater than the corresponding position subscript of the last se-
quence. Subtract two from this subscript to obtain the subscript for the (f + 1)St member
and complete the (f + 1)St member by filling all positions to the right with the largest pos-
sible subscripts consistent with size-order and position parity. Note that subtraction of
two's is necessary to retain position parity.

The implementation of the algorithm is even simpler than the description as is illus-
trated in the "by hand" generation of {N‘é}o in (12).

-2 -2 -2 -2 -2
(12) -2 -2 -2 -2 -2
-2 -2 -2 -2
8, 7, 4, 3 8, 5, 4, 3 8, 3, 2, 1 6, 5, 2, 1

What is the power of abasic subscript set? It canbe shownby comparison with a physi-
cal model that the power of the collection of either numerator subscript sets or denominator
subscript sets is Fibonaccian and this, in turn, provides a clue to the answer.

It is well established [4]-[6] that the resistance or conductance of electrical ladder
networks has as the ratio of numerator terms to denominator terms a ratio of Fibonacci num-
bers. For example, if a ladder network is composed of n unit conductances with a shunt
conductance at the input end and either a shunt conductance (n odd) or a short circuit (n even)

at the output end, the conductance measured at the input terminals is given by™

*Several other forms in terms of resistance or conductance are, of course, possible. For
example, Basin [6] states the input resistance of the dual of the above network with n even
as F2n+1 /FZn' However, Basin's n is half the n of this paper because of a choice in size

of his unit network.
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n
where Fy, Fy, F3, Fy, --» =1, 1, 2, 3, **+ arethe well-known Fibonacci numbers. More-

over, if the shunt arms of the ladder network are replaced and described by odd subscripted
admittances (y's) and the series arms are replaced and described by even subscripted im-
pedances (z's) with the numbering increasing away from the input terminals, (4) exemplifies
the continued fraction and rational fraction form of the input admittance. To complete the
identification, odd subscripted a's of (4) are interpreted as y's, and even subscripted a's

are interpreted as z's. It can be seen that the power of a collection of basic subscript sets

is given by
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That {NE}O might be equal to a Fibonacci-related binomial coefficient is suggested in a
paper by Raab [9] in this Journal. Raab shows that by selecting the entries of a certain di-

agonal of the Pascal triangle array, the Fibonacci numbers are given by

(16) Fo= . (n’é'f}).

However, Perron [1] lists term-by-term the identical binomial coefficients obtained in the

expansions of (1) and (2). This verifies, as was suspected, that

[=5]

(n (5} | =
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3. GENERAL SUBSCRIPT SETS

It is apparent that the basic subscript sets belong to a more general class of subscript
sets. Consider a set of all possible sequences of h, non-zero, non-repeating, positive inte-
gers called subscripts, having the properties that no subscript exceeds M or is less than
m and that each sequence within a set has the same parity order. Let it be further specified
that each sequence be arranged in descending size order from left to right. Thus, there is a
unique starting sequence and a unique last sequence. The leftmost position of the starting
sequence is occupied by a subscript <M (depending on mutual parities), and the remaining
th - 1) positions are filled with the largest subscripts possible consistent with size-order and
parity. Similarly, the rightmost position of the last sequence is occupied by a subscript
2m (depending on mutual parities), and the remaining (h - 1) positions are occupied by the
smallest consistent subscripts. For example, if h = 6, M = 20, m = 3 and positionpar-

ity is even, odd, even, even, even, even, the starting sequence must be 20, 19, 18, 16, 14,

12, and the last sequence must be 12, 11, 10, 8, 6, 4. Because the position parity must
be the same for the starting and last sequence and because of the compacting af subscripts to
the left in the starting sequence and to the right in the last sequence, the difference between
the same position subscripts within the starting and last sequences is the same. From this
fact, it can be seen that there is a constant difference g between corresponding position
subscripts in the starting and last sequences, and moreover, q must be even as the result
of position parity. Once a starting and last sequence are determined, the generation of sub-
script sets in general follows the algorithm givenfor basic subscript sets. Of course, parity
must be strictly observed.

While (17) applies in particular to basic subscript sets and is useful for counting them
without first determining the starting and last sequences, it is possible to use (17) to obtain a
new form suitable for counting all subscript sets.

Consider \{Nﬁ}o l If n and h are both odd or both even (i.e., n+h is even),

n+hl _n+h
(18) [ : ] =L
Since the last member of the starting sequence is (n - h + 1), it must be odd. This makes g
(19) g=0-h+1)-1=(@-h.

If n is odd and h even or vice versa (i.e., n+h is odd),

(20)

[n+h]_n+h—1
2 - 2

In this case, the value of q is

(21) g=@-h+1)-2=(@-h-1.
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Elimination of n between either (18) aad (19) or between (19) and (20) results in the single

equation

hy _ (h + q/2
(22) {Nn}o B ( q/% )

which is independent of n and the parity of (n + h).

Next, consider the sequences of differences between any sequance and the last sequence
of {Nﬁ} . This set of differences starts with a sequence of h g's, (g9, q, q, -++, a) and
ends wit(l)l the sequence of h zeros (0, 0, 0, -+, 0). The same algorithm applied to the
sequence of differences produces members of the difference set in one-to-one correspondence
with the members of the basic subscript set, and thereby (22) is applicable for counting them.
However, a little reflection reveals that the same (q, 9, 9, *++, @ to (0, 0, 0, -+, 0)
sequences apply to any subscript set having the given q and h. Thus, (22) can be recast

more generally as

h + q/2
23 R .
@) h,q ( a/2 )

4. SOME USEFUL NON-BASIC SUBSCRIPT SETS

It was noted earlier that {Nﬁ}o provided subscripts for a sum of products of coefficients
such as axayaz «++ (see (4)). If the even subscripted a's represent one kind of item (as in
(5)) and the odd subscripted a's represent another, the sequences of the basic subscript set
represent sums of products of kinds of things in a fixed alternation pattern. For example, in
another of the physical systems described earlier, the odd subscripted a's were shunt arm
admittances (y's) and the even subscripted a's were series arm impedances (z's). In the
case of a lumped element ladder network, a product has a specific :--zyz'-+ order. In the
study of certain cascaded distributed element transmission systems, a mathematical inter-
action takes place which, in effect, keeps the -:-zyz: -+ order the same but introduces addi-
tional sums of products in which even subscript positions replace some or all of the former-
ly odd subscript positions of the basic subscript set [10], [11].

Let { Nﬁ}ﬂ be a subscript set whose subscripts describe the same elementproductor-
der as is described by the basic subscript set but whose sequences each have £ of the odd
subscript positions of {N } replaced by £ even subscript positions. If g is the number
of odd parity positions in a soequence of {Nn} there are ( % distinct types of parity ar-
rangement for the sequences of {Nn} . To obtam {Nn , itis feasible to form % sub-
sets each having its own starting sequence and last sequence. The subsets are designated
{Nh} {Nh} )’ etc. , and are generated and or counted just like any subscript set. Let
the pos1t10n of the rightmost odd subscript of {N } be designated odd position 1, next on the

left odd position 2, etc., up to and including g. Determme the names of the | % combina-
tions of the odd position numbers 1, 2, -.., g taken £ at atime. For each combination of

odd position numbers, the sequences of the subsets have the parity arrangement of {Ng}o
except for £ former odd subscript positions replaced by { even subscript positions. The

subscripts of the starting sequence should be as large as consistently possible and those of
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the last sequence as small as consistently possible. While the power of the individual sub-
sets can be found from (23), the power of {Nﬁ}ﬂ is given by

@)+

> +qi /}

h
(24) ’ { N, }ﬂ

i=1 2
5. DERIVATION OF IMAX
For the physical systems which utilize {Nﬁ}l, the value of lmax for each h is of

great use in determining the number of coefficients, and hence size, of governing equations.

Certainly zmax cannot exceed g and there are many possible situations in which £,
cannot even equal g. It is shown below, in fact, that lmax is equal to the lesser of q/2 or
g of {Nh} .

N7

The starting and last sequences, respectively, of {Nj;l}o take on either of the two forms
givenby (8), (9) or (10), (11). Since corresponding position subscripts are of the same parity,
n and h in (8) and (9) can be either both even or both odd. In (10) and (11), if n is even, h
is odd, and if n is odd, h is even.

(a) n,h both even (Egs. (8) and (9)). There are h/2 even and h/2 = g odd subscripts

in any sequence. If n 2 2h, there are exactly (equals sign) or morethan h even subscripts

available between n and 1 (including n). Thus, if n-h = q is divided bytwo, and there-
by a/2 = h/2, a sequence with all even subscripts can be found. Thus ﬂmax is not limited
by q/2 since h/2 odd positions have been filled with even subscripts. If n < 2h, there
are less than h even subscripts available between n and 1 (including n). This is reflected
by d/2 < h/2. The value for Loy mustbe q/2.

(b) n,h both odd (Egs. (8) and (9)). There are (h - 1)/2 evenand (h+1)/2 = g odd
subscripts in any sequence. If n 2 2h +1, there are exactly (equals sign) or more than h
odd subscripts between n and 1 (exclusive of 1). Thus, if g/2 2 (h +1)/2, there are at

least h odd subscripts between n and 1 (exclusive of 1) which can be reduced by one to

give at least h even subscripts. Such a sequence would have (h + 1)/2 former odd positions

filled by even subscripts. Therefore, £, .. is not limited by a/2 since (h + 1)/2 odd
positions have been filled by even subscripts. If q/2 < (h +1)/2, the value for £y,55x must
be q/2.

(¢) n even, h odd (Egs. (10) and (11)). There are (h +1)/2 even and (h-1)/2 = g

odd subscripts in any sequence. If n 2 2h, there are h distinct even subscripts between n

and 2 (including n and 2). The condition can be arrangedas n-122h-1 or n-1-h
2 h-1or n~1-h)/22 (h-1)/2, where (n-1-h) = q. Since fulfillment of this con-
dition fills (h - 1)/2 odd positions with even subscripts, £ is not limited by q/2. If
q/2 < (h - 1)/2, the value for Limax

(d n odd, h even (Egs. (10) and (11)). There are h/2 even and h/2 = g odd sub-

scripts in any sequence of the basic set. If n 2 2h + 1 there are exactly (equals sign) or

max
must be q/2.
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more than h odd subscripts between n and 2 (including n) which can be reduced by one
to give at least h even subscripts. Therefore, n-h-12h, (n-h-1}/2 2 h/2, and
Lmax 1is not limited by q/2. If q/2 < h/2, the value for £, ..

From (a), (b), (c), and (d), it is seen that in all cases q/2 is the value for {

must be q/2.

max if
9/2 is less than or equal to g, the number of odd positions in a sequence, and g is the
value for £,... if q/2 is greater than or equal to g. A sufficient condition for q/2 to be

the greatest £,,,. for a given n and any h occurs when q/2 = g.

6. EXAMPLEOF{Nﬁb

i) ST T
’ N ’

8765 8721 6543 8764 1 8643 8642
8763 8543 6521 8762 | 8641
8761 8541 6521 8742 | 8621
8743 8521 6321 8542 | 8421
8741 8321 4321 6542 | 6421
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