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1. INTRODUCTION 

We define the Fibonacci sequence in the usual manner by Ft - F2 = 1 and F, 9 = 
Fk+1 + F k f o r e a c i l k i n t n e s e t N o f P o s i t i v e integers. An integer is said to have a r e p -
resentation with respect to a sequence if it is the sum of some finite subsequence. A sequence 
is complete if every positive integer has a representation with respect to the sequence. 

In [2] , Hoggatt and King showed that the sequence { F , } of Fibonacci numbers is com-
plete, and O'Connell showed in [3] that the sequence 1, 1, 1, 1, 4, 4, 9, 9, 25, 25, ••• of 
two of each of the Fibonacci squares F? is complete. In Theorem 1 of this paper we show 
that the sequence of 2 of each of the Fibonacci n powers F, is complete, and (as is 
obvious) that fewer than 2 " copies of { F , } does not yield a complete sequence. 

Hoggatt and King [2] showed that the Fibonacci sequence with any term deleted is com-
plete, but is no longer complete if any two te rms are omitted. OfConnell [3] showed that the 
twofold sequence of Fibonacci squares mentioned above with anyone of the first six te rms de -
leted is still complete, but that the deletion of any term after the sixth or of any two terms 
will destroy completeness. In treating sequences of Fibonacci n powers, this l e d u s t o d e -
fine a minimal sequence. 

Definition. A minimal sequence is a complete sequence which is no longer complete if 
any element is deleted. 

For each positive integer k, the sequence { F . } with F, removed is a minimal s e -
quence of Fibonacci numbers. Although only two minimal sequences 1, 1, 1, 4 , 4, 9, 9, 
25, 25, ••• and 1, 1, 1, 1, 4 , 9, 9, 255 25, ••• can be obtained by deleting elements from 
the twofold sequence of Fibonacci squares , there a re infinitely many minimal sequences 
comprised of Fibonacci squares. One can simply replace some term F? in a minimal s e -
quence of Fibonacci squares by several t e rms F? whose sum is less than or equal to F^ in 
a way which preserves minimality, as illustrated by the minimal sequences 1, 1, 1, 1, 1, 
1, 1, 1, 9, 9, 25, 25, ••• (replacing 4 by 1, 1, 1, 1) or 1, 1, 1, 4, 4, 4, 9, 25, 25, ••• 
(replacing 9 by 4). For each n la rger than 3, infinitely many minimal sequences can be 
obtained by deleting t e rms from the 2 " -fold sequence of Fibonacci n powers. How-
ever, one can obtain a part icular minimal sequence from the 2 " -fold sequence of Fibon-
acci n powers by deleting as many t e rms F, as possible without destroying completeness 
before deleting any te rms F k + 1 , for k = 2, 3, 4 , ' ' *. We show in Sec. 4 that this yields 
the unique minimal sequence defined below. 
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Definition. A distinguished sequence of Fibonacci n powers is a sequence a which 
maps N onto { F , | k E N / satisfying 

(a) a, < a. - for every k E N , 

k 

(b) a, - < 1 + 2_] a - f ° r every k E N , 
i=l 

k-1 
(c) a , + - f a, implies 1 + ^ a. < a .+ - for every k E N . 

i=l 
In Theorem 4, we show that if 

- 1 — ) 1 
where ' [ • • ' • 1 is the. greatest integer function, and {ak} is the distinguished sequence of 
Fibonacci n^n powers, then from some point on each Ff1 occurs exactly r or r - 1 t imes. 
Theorem 5 sharpens this result to show that for even n each FJj1 appears exactly r t imes 
from some point on. 

2. BASIC IDENTITIES 

The identities 
F. -F . , = F? + ( - l ) k and F . ^ - F , ^ = F. F. _ + ( - l ) k 

k-1 k+1 k k+1 k+2 k k+3 

follow easily by induction on k and show that 

(1) 

for any positive integer k. Thus {F~ , / F
2 k "J i s a n increasing sequence, \ F

2 k + l / F ? k ^ 
is a decreasing sequence, and 

(2) ^ j _ < ^ i 
* 2 j - l 2k 

for all positive integers j and k. Since 

F2k+1 F 2k 1 

F2k ^ F2k+1 

*2k-l r2k 

F2k ^ F2k+2 

2k-1 2k+l 

F2k+1 ^ F2k+3 
F2k F2k+2 

F 2k F 2 k - 1 F 2 k F 2 k - l 

approaches zero as k approaches infinity, the sequences 
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( F 2 k ' F 2 k - l } ' ^ F 2 k + 1 / F 2 k > ' a n d ( F k + l / F k } 

have a common limit a. The identity 

Fk+2 _ Fk+1 + F k _ x +
 F k 

Fk+1 Fk+1 Fk+1 

implies that a = 1 + i/a, and a is clearly positive, so a = (1 + \/5)/2 is the common 
limit. These a re all well known propert ies of the Fibonacci numbers. 

From (1) and (2), it is c lear that 5/3 = F5 / F 4 > F k + 1 / F f e except when k = 2. It 
follows by induction that 

( W < (t J (3) | - 4 £ i J < / i ) < 1 + 21 1-1 (k ^ 2) 

for all positive integers n and k with k £ 2. Now the inequality 

k 

(4) F£+1 < 1 + ^ Y J A (n'k " N) 

i=l 

is true for k = 1 and k = 2, and for k > 2, 

k-1 k 
F ^ + 1 < (1 + 2 n - 1 ) F ^ = F^ + 2 n - 1 F j < 1 + 2 n ~ 1 £ Ff + 2 n " 1

F £ = 1 + 2 n - 1 £ F* 
i=l i=l 

follows by induction on k. 
3. COMPLETE SEQUENCES 

It will frequently be helpful to use the following criterion due to Brown [1] in consider-
ing the completeness of various sequences. 

Completeness Criterion: A non-decreasing sequence {a .} of positive integers is com-
plete if and only if 

k 

<5> ak+l ^ 1+J2 h 
i=l 

for every non-negative integer k. 
Brownfs cri terion and the inequality (4) a re instrumental in proving the next theorem. 
Theorem 1. For any positive integer n, the sequence of 2 of each of the Fibon-

acci n powers is complete, but the sequence of 2 - 1 of each of the Fibonacci n 
powers is not complete. 
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Proof. Let {a .} be the 2n~ -fold sequence of Fibonacci n powers. That i s , 

a. = F n for (m - 1) • 2 n ~ 1 < k < m • 2 n ~ 1 . k m 

If k = 2 • m for some m €E N, then a. , - = F , - and 
k+1 m+1 

k m 

i=l i=l 

so the inequality (5) follows from (4). Otherwise, a. - = a^ and the inequality (5) is clear. 
Hence {a .} is complete by the Completeness Criterion. 2,n~l - 1 copies of \ F . } is ob-
viously not complete, since 

F £ = 2 n > 1 + (a11"1 - 1)(F? + i f ) = 2 n - 1 . 

It is easy to see that the 2 " -fold sequence of Fibonacci n powers is not minimal, 
since in any case, one of the 2 ones can be omitted. For n ^. 4, infinitely many te rms 
can be omitted without destroying completeness, as is shown by the following theorem. 

Theorem 2. Let n be a positive integer and let r2 = 2 - 2 , r. = I ( F . + 1 ^Fk^ ^ 
for each positive integer k fi 2. Then the non-decreasing sequence of Fibonacci n"1 powers 
in which, for each positive integer k, F. occurs exactly r. t imes, is complete. 

Proof. The sequence {a .} defined in this theorem is given by taking a. = F, when 

k-1 k 
V r . < i < V r . . 

j=L 1=1 

The condition (5) is clear if a, - = a, . Otherwise, we have a, = F , a , + 1 = F - , and 

a .^ , = Fn' , < (1 + r ) F n = F n + r F n 
k+1 m+1 m ' m m m m 

m - 1 m 
< 1 + Y r . F n + r F n = 1 + V r . F n . L~d 1 1 m m £~*4 I I 

i=l i=l 

Therefore (5) follows by induction on m. The Completeness Criterion gives the theorem. 
If n > 4 and k > 3, 

r k = | ( F k + 1 / F k ) n ] ] < E(5/3)n] < 2n'1 - 1 

by (3), and so at least one term F^ for each k = 3, 4, 5, • • • can be omitted from the 
2 " -fold sequence of Fibonacci n- powers. There is still no guarantee that the sequence 
given in Theorem 2 is minimal. (It i s , if n = 1 or 2.) However, we will see in the next 
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section that if n is even, then the sequence given in Theorem 2 is almost minimal, in the 
sense that a minimal sequence can be obtained from it by deleting a finite subsequence. 

4. THE DISTINGUISHED SEQUENCES 

We will now specialize our study to a part icular minimal sequence of Fibonacci n 
powers. Let us recall our definition of a distinguished sequence. 

Definition. A distinguished sequence of Fibonacci ifi1 powers is a sequence { a j j which 
maps N onto {F |J | k E N } satisfying 

(a) a, < a, - for every k £ N , 
k 

(b) a , + 1 < 1 + Y ^ a. for every k £ N , 
i=l 

k - l 
(c) a . + 1 f a, implies 1 + \ J a. < a, for every k e N . 

1=1 

We would like to show that for each positive integer n, a distinguished sequence ex-
ists and is unique. Starting with the complete 2 " -fold sequence of Fibonacci n powers, 
deleting one F2 = 1, and consecutively deleting enough F. so that (b) arid (c) are satisfied 
for j = 3, 4 , 5, • • • , it is c lear that one can construct a sequence satisfying (a), (b), and 
(c). The inequalities F. - + F n ^ (F. 1 + F . ) n = Fn' , (b), and (c) insure that {a. } is onto 
f Y\ I ~i " " J J J 

\ F . I i E N ) . Proper t ies (b) and (c) also guarantee uniqueness. Henceforth, we will.call the 
unique distinguished sequence of Fibonacci n powers the n distinguished sequence. 

The work [2] of Hoggatt and King shows that the f irs t distinguished sequence {a.} is 
the sequence 1, 2, 3, 5, 8, 13, ••• defined by taking a. = F. - , and OfConnellsT work [3] 
shows that the second distinguished sequence {a .} is the sequence 1, 1, 1, 4, 4, 9, 9, 25, 
25, 64, 64, • • • defined by taking a. = F? for j = [[i/2]] + 1. 

1 J th 
Theorems 4 and 5 give information about the n distinguished sequence for any posi-

tive integer n. Before stating these theorems we will introduce some notation and recall 
some well known facts concerning Fibonacci and Lucas numbers. 

Let a = (1 + \l~5)/2 and j3 = (1 - \l~5)/2 be the roots of the equation x2 = x + 1, and 
note that aft = - 1 . Eecall that 

Multiplying x2 = x + 1 by x , we see that 

n+2 n+1 L n 
a = a + a , 

(6) pa+2 = / 3 n + 1 + /3n , 

, n+2 ^ ^n+2. . n+1 , 0 n+L , . n , „nv 
(a + j8 ) = {a + j8 ) + (a + /S ) . 

Defining 
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(7) L = an + f = a n + (-lA*)n 

for n = 0, 1, 2, 3 , * • • , we see that L0 = 2, LA = 1 (since a = 1 + l / a ) , and L - = 
L + L for any positive integer n. The integers L defined in this way are the usual 
Lucas numbers. Now a > 1, so 0 < l/a < 1 for each positive integer n, and it follows 
from (7) that 

(8) lanl = an - ± = L n (n odd) 
a 

and thence 
[a ]] = a + — - 1 = L - 1 (n even) 

a 

(9) lanJ < an < []>nl] + 1 (n E N) . 

Also, a2 = a + l > 2, s o O < 2/or < 1 for any even positive integer n, and 

(10) l/an + [c/1]] < <*n < |[a?n] + 1 (n even) 
follows from (8). 

Lemma 3. For each positive integer n there is a positive integer M such that, for 
k > M , 

I^D < (F k + 1 /F k ) n < lanl + 1 , 
and, if n is even, 

(Fk_i / F k ) n + I E ^ K (Fk+i / F k > n < n > n n + 1 • 

Proof. This lemma is immediate from (9), (10), and the l imits , 

k ^ o c ( F k + l / V n = * n • k 1 ^ ( F k - l / F k ) n = &* • 

We are now ready to prove Theorems 4 and 5. 
Theorem 4. Let {a .} be the n distinguished sequence, and let r = [[a J , where 

a = (1 + N/"5)/2. Then there is a positive integer M such that for each k > M, a. = F, 
for exactly r or r - 1 values of i. 

Proof. Let M be as in Lemma 3. It suffices to show that if k ^ M and 

h = min{i |a. = F£} , 

then 
h-1 h -1 

1 + E h + (' " *K < Fk+1 ^ X + E ai + r F k 
i=l i=l 

We know by property (c) of the distinguished sequence that 
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h-2 h-1 

393 

1 + 

i=l i=l 
and so 

since 

Also, 

h-1 

1 + E a. + (r - 2)F* < F ^ + (r - 1)F» < rF« < F ^ 

( F k , l / F k ) n 

h-1 

i=l 

by property (b) of the distinguished sequence, so 

since 

h-1 

Fk+1 < ^ + < 1 1 + Z a i + r F k ' 
i=l 

i W F k > B K r + 1-
We can sharpen this result for even values of n. 

Theorem 5. Let n be an even positive integer, let {a.} be the n distinguished 

sequence, and let r = [ » n ] for a = (1 + \Z*5)/2. Then there is a positive integer M 

such that for each k ^ M, a. = F. for exactly r values of i. 

Proof. Let M be as in Lemma 3. It suffices to show that if k ^ M and ' 

h = min{i | a. = F^} , 

then 

h-1 h-1 

1 + E h+ (r - 1)Fk < C i * x + E a i + r Fk • 
i=l i=l 

By property (c) of the distinguished sequence {a.} , 

h-2 h-1 

1 + 

i=l i=l 

so 

h-1 
1 + E h+ <r - K < F k - i + r F k < F< n / _n 

k+1 ' 
i=l 
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since 
( F k - i / F k > n + r < < F

k + i / F
k > n • 

By property (b), 
h -1 h-1 

Fk * 1 + X > i > BO Fn
k+1 < (r + 1)F» < 1 + £a. + < , 

i=l i=l 

since 
( JWVn < r + 1 

Now we define a complete sequence to be almost minimal if it can be made minimal by 
deleting a finite subsequence. 

Corollary 6. If n is even, the sequence defined in Theorem 2 is almost minimal. 
Proof. The sequence {a. } defined in Theorem 2 is given by taking 

I 

*V = K F ^ I / F J 1 1 ] Lk " - ^ k + l ' ^ k 7 

for each positive integer k ^ 2, r2 = 2 - 2, and taking a. = F, when 

k-1 k 

Since r, > 1 for every k f- 2, the sequence {a.} is onto the set ( F , | k E N } . Since 
{a .} is a complete sequence of non-decreasing t e rms , it satisfies propert ies (a) and (b) of 
the n distinguished sequence. For M as in Lemma 3, r, = [[# ] = r when k > M. 
Thus, the minimal n distinguished sequence can be obtained from the sequence {a .} by 
deleting finitely many te rms F, with k ^ M. 

When n is even, Corollary 6 provides a fairly efficient means of constructing the n 
distinguished sequence in a finite number of steps. F i r s t M is determined by inspection, 
for example, and then enough of the r, t e rms F, a re deleted to make the sequence sa t i s -
fy property (c) of the distinguished sequence, for k = 3, 4, • • • , M - 1. For example, when 
n = 4, we have M = 5 and r t = 1, r2 = 14, r3 = 5, r4 = 7, r. = 6 (k > 5). So the 
sequence of Theorem 2 has fifteen l ' s , five 16fs, seven 81Ts, and six F*Ts for all k > 
5. Since none of the F? can be deleted for k < 5, this sequence is already the fourth d i s -
tinguished sequence. 
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