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1. INTRODUCTION

We define the Fibonacci sequence in the usual manner by F; = F, = 1 and Fk+2 =
Fk+1 + Fk for each k in the set N of positive integers. An integer is said to have a rep-
resentation with respect toa sequence if it is the sum of some finite subsequence. A sequence
is complete if every positive integer has a representation with respect to the sequence.

In [2], Hoggatt and King showed that the sequence {Fk} of Fibonacci numbers is com-
plete, and O'Connell showed in [3] that the sequence 1, 1, 1, 1, 4, 4, 9, 9, 25, 25, --- of
two of each of the Fibonacci squares F2 is complete. In Theorem 1 of this paper we show

k
that the sequence of Zn—l of each of the Fibonacci nth powers Fﬁ is complete, and (as is

obvious) that fewer than Zn'l

copies of {Fﬁ} does not yield a complete sequence.

Hoggatt and King [2] showed that the Fibonacci sequence with any term deleted is com-
plete, but is no longer completé if any two terms are omitted. O'Connell [3] showed that the
twofold sequence of Fibonacci squares mentioned above with anyone of the first sixterms de-
leted is still complete, but that the deletion of any term after the sixth or of any ‘two terms
will destroy completeness. In treating sequences of Fibonacci nth powers, this led us tode~

fine a minimal sequence.

Definition. A minimal sequence is a complete sequence which is no longer complete if

any element is deleted.

For each positive integer k, the sequence {Fl} with Fk removed is a minimal se-
quence of Fibonacci numbers. Although only two minimal sequences 1, 1, 1, 4, 4, 9, 9,
25, 25, -+ and 1,1, 1, 1, 4, 9, 9, 25, 25, --- canbe obtained by deleting elements from
the twofold sequence of Fibonacci squares, there are infinitely many minimal sequences
comprised of Fibonacci squares. One can simply replace some term Ff{ in a minimal se-
quence of Fibonacci squares by several terms Fi whose sum is less than or equal to Ff{ in
a way which preserves minimality, as illustrated by the minimal sequences 1, 1, 1, 1, 1,
1,1, 1, 9, 9, 25, 25, --- (replacing 4 by 1, 1,1, 1) or 1,1, 1, 4, 4, 4, 9, 25, 25, *--
(replacing 9 by 4). For each n larger than 3, infinitely many minimal sequences canbe
obtained by deleting terms from the Zn_l-fold sequence of Fibonacci nth powers. How-
ever, one can obtain a particular minimal sequence from the 2n_1-fold sequence of Fibon-
acci nth powers by deleting as manyterms FE as possible without destroying completeness
before deleting any terms F§+1’ for k =2, 3, 4, "**. We show in Sec. 4 that this yields

the unique minimal sequence defined below.
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Definition. A distinguished sequence of Fibonacci nth powers is a sequence a which
maps N onto {FE \k € N} satisfying

(a) a forevery k € N,

<
k = Zk+1

k
< 1+Z:ai forevery k € N,
=1

(b) 2 =

k-1
(c) a1 # a implies 1+ Z a; < a1 forevery k € N.

i=1
In Theorem 4, we show that if

e = {1z NBY
S ,
where [ -:- ] is the greatest integer function, and {ak} is the distinguished segmnence of

Fibonacci nth powers, then from some point on each Ffl occurs exactly r or r - 1 times.
Theorem 5 sharpens this result to show that for even n each F{’ appears exactly r times

from some point on.

2. BASIC IDENTITIES

The identities

k k
- 2 - = -
Fk + (~1) and F F F + (-1)

Fr1Fen k+1Flc+2 Fres

follow easily by induction on k and show that

F F F F
) 2k . _2k+l 2k . 2k+2

Fort1 o Fores
I :
Fok-1 ¥

Fok Fok+2

2k Foke1  Fagrr

for any positive integer k. Thus {FZk /F2k—l} is an increasing sequence, {F2k+1 /sz}
is a decreasing sequence, and

F,. F
@) - 2j < I?‘k-*-l
2j-1 2k
for all positive integers j and k. Since
Forr1  Fax 1
Far  Forr  Fakfaka

approaches zero as k approaches infinity, the sequences
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PP gh (P /Py and {7, /)

have a common limit @. The identity

F F,, *+F
kT Tk, 'k

Fla

k42
Fla

implies that @ = 1+ 1/o, and a is clearly positive, so a = (1 + ~6)/2 is the common
limit. These are all well known properties of the Fibonacci numbers.

From (1) and (2), itis clear that 5/3 = F; /Fy 2 Fia /Fk except when k = 2. It
follows by induction that

(3) Fk+1n< §n<1+z“'1 k # 2)
Fk - 3

for all positive integers n and k with k # 2. Now the inequality

k
n < n-1 n —
@) Foo S 1+2 ZFi (,k € N)
i=1

is true for k = 1 and k = 2, and for k > 2,

k-1 k
n n-1..n_ _n n-1.n n-1 n n-i-_n _ n-1 n
Foo < @+ 2" O)F) = Bl + 2" F) < 142" Y El 2 R =1 4 2N Y
i=1 i=1

follows by induction on k.
3. COMPLETE SEQUENCES

It will frequently be helpful to use the following criterion due to Brown [1] in consider-
ing the completeness of various sequences.

Completeness Criterion: A non-decreasing sequence { ai} of positive integers is com-

plete if and only if
k
<
®) By S 14208

for every non-negative integer k.

Brown's criterion and the inequality (4) are instrumental in proving the next theorem.
1 of each of the Fibon-
- 1 of each of the Fibonacci nth

Theorem 1. For any positive integer n, the sequence of 2"

. th . -
acci nt powers is complete, but the sequence of 2" 1

powers is not complete.
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Proof. Let {ai} be the Zn'l—fold sequence of Fibonacci nth powers. That is,

a = e for m - 1) - 2l < k< m. Zn—l.
m
_ oh-1 _

If k=2 . m for some mé& N, then g = Fm+1 and

k

m
DI 2n_1ZFlil g
i=1

i=1

so the inequality (5) follows from (4). Otherwise, A4 T Bk and the inequality (5) is clear.
Hence {ai} is complete by the Completeness Criterion. an-1_1 copies of {FE} is ob-
viously not complete, since

Fl=o> 1+ CpEl e F) = 2" -1,

It is easy to see that the Zn'l-fold sequence of Fibonacci nth powers is not minimal,
since in any case, one of the 2" ones can be omitted. For n = 4, infinitely many terms
can be omitted without destroying completeness, as is shown by the following theerem.

Theorem 2. Let n be a positive integer and let r, = 2" - 2, r = I[(Fk+1 /Fk)n 1
for each positive integer k # 2. Then the non-decreasing sequence of Fibonacci n** powers
in which, for each positive integer k, FE occurs exactly T times, is complete.

Proof. The sequence { ai} defined in this theorem is given by taking a; = FE when

k-1 k
<< .
) 1‘j ! Z I'j
i1 =1
. . . _ . _ h -
The condition (5) is clear if 3y = e Otherwise, we have 2 Fm’ 21 Fm+1’ and
= F2 < o _ n
A1 Fm+1 = @+ I‘m)Fm Flr]n + I‘mFm

m-1 m

< n no_ n

S1+ Y rF 4 Foo= 1+ ) rF
i=1 i=1

Therefore (5) follows by induction on m. The Completeness Criterion gives the theorem.
If n>24 and k 2 8,
= n n n-1
r, = [[(Fk+1 /Fy) T < [/37] = 2 -1

by (3), and so at least one term FE for each k = 3, 4, 5, **+ can be omitted from the

2n'1-fold sequence of Fibonacci nth powers. There is still no guarantee that the sequence

given in Theorem 2 is minimal. (Itis, if n = 1 or 2.) However, we will see in the next
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section that if n is even, then the sequence given in Theorem 2 is almost minimal, in the

sense that a minimal sequence can be obtained from it by deleting a finite subsequence.

4. THE DISTINGUISHED SEQUENCES

We will now specialize our study to a particular minimal sequence of Fibonacci nth

powers. Let us recall our definition of a distinguished sequence.

Definition. A distinguished sequence of Fibonacci nth powers is a sequence {ak} which
maps N onto {FE lk EN} satisfying

<
(a) a S a ,, forevery kKEN,
(b) a1 < 1+ Z a, forevery kEN,
k-1
(c) o # 2y implies 1+ z a; < Y for every ke N.
i=1

We would like to show that for each positive integer n, a distinguished sequence ex-
ists and is unique. Starting with the complete Zn_l—fold sequence of Fibonacci nth powers,
deleting one Fg = 1, and consecutively deleting enough F;l so that (b) and (c) are satisfied
for j = 3, 4, 5, *++, itis clear that one can construct a sequence satisfying (a), (b), and
(¢). The inequalities F]JO 17 F] = (F F o= F +1° (b), and (c) insure that {a } is onto
{Fn l ie N} Properties (b) and (c) also guarantee Emlqueness Henceforth, we will call the
unique distinguished sequence of Fibonacci nth powers the nth distinguished sequence.

The work [2] of Hoggatt and King shows that the first distinguished sequence {ai} is
the sequence 1, 2, 3, 5, 8, 13, -+ defined by taking a;, = F, ., and O'Connells' work [3]
shows that the second distinguished sequence {ai} is the sequence 1, 1, 1, 4, 4, 9, 9, 25,
25, 64, 64, -+ defined by taking a; = F§ for j = [i/2] + 1.

Theorems 4 and 5 give information about the nth distinguished sequence for any posi-

tive integer n. Before stating these theorems we will introduce some notation and recall
some well known facts concerning Fibonacci and Lucas numbers.
Let @ = (1+~5)/2 and B = (1 - N5)/2 be the roots of the equation x* = x +1, and
note that of = -1. Recall that
a le"n Fk+1 /Fk) .

Multiplying x* = x+ 1 by xn, we see that

an+2 _ an+1 Lt ,
(6) g2 = g™y g
(an+2 + Bn+2) - (an+l + ﬁn+1) + (an + Bn) .

Defining
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n
(7) L = o+ gt =+ (1)
for n=0,1,2,3, -, weseethat Ly =2, Ly =1 (since o« = 1+1/a), and Ln+1 =

Ln + Ln—l for any positive integer n. The integers Ln defined in this way are the usual
Lucas numbers. Now a > 1, so 0 < 1/01n < 1 for each positive integer n, and it follows

from (7) that

ng _ n 1 _
(8) a]]__a__n—Ln (nodd),
a
[[an]]=an+in_1= L -1 (@ even,
and thence @
(©) ["] <’ <[T+1 @EN.

Also, &2 =a+1>2, so 0 < 2/(1/n < 1 for any even positive integer n, and

(10) 1/ +[d"] < o™ < |[ozn]] +1 (n even)
follows from (8).
Lemma 3. For each positive integer n there is a positive integer M such that, for

k 2 M,

n n n

[e] < (Fk+1/Fk) <[] +1,

and, if n is even,

n n n n

‘ < <
F /Fk) + [[e7] (Fpiq /Fk) [e ] +1.

Proof. This lemma is immediate from (9), (10), and the limits,

) n_ n . n _ n
klltmoo (Fk+1 /Fk) =a , kll'mm (Fk-l /Fk) 1/a .

We are now ready to prove Theorems 4 and 5.
Theorem 4. Let {ai} be the nth distinguished sequence, and let r = I[an]], where

a = (1 + ~5)/2. Then there is a positive integer M such that for each k = M, a, = FE

for exactly r or r - 1 values of i.
Proof. Let M be as in Lemma 3. It suffices to show that if k 2 M and

h = min{i lai = FE} s

then
h-1 h-1
_ n < n < n
1+Zai+(r Z)Fk Fk+1_1+2ai+rFk.
i=1 i=1

We know by property (c) of the distinguished sequence that
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h-2 h-1
= o <
1*2"‘1 1+Zai Fron S Fos
i=1 i=1

and so
h-1
1+ L+ - n< g - o< < g2
iz=1 B+ - AR S Fy o+ - DF S TF < Py
since
< n
T (Fk+1 /Fk) .
Also,
h-1
n
<
Fk =1+ ay
i=1
by property (b) of the distinguished sequence, so
h-1
n < n . n
Fo,, < @+ DF, $1+2 a +71F ,
i=1

since
n
<
(Fk+1/Fk) r+ 1.

We can sharpen this result for even values of n.

Theorem 5. Let n be an even positive integer, let {ai} be the nth distinguished
sequence, andlet r = [o”] for @ = (1 + «5)/2. Then there is a positive integer M
such that for each k 2 M, a; = Fé‘ for exactly r values of i.

Proof. Let M be as in Lemma 3. It suffices to show that if k 2 M and

/

oS n
h = mm{l Iai = Fk} )
then
h-1 h-1
3 n n n
- < <
1+Y a + (- DF, Fk+1_1+Zai+rFk.
i=1 i=1

By property (c) of the distinguished sequence {ai} s

h-2 h-1

= _fl < gt

1+Eai 1+Zai F._, < Fp
i=1 i=1

S0
h-1
n n

L Qe+ (- DFS Py + xF < P,
i=1
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since
n < n
(Fk—l /Fk) +r (Fk+l /Fk)
By property (b),
h-1 h-1
n . n < no n
F S 1+ 2 so  Fyg (r + 1)Fk <1+ Zai + rF)
i=1 i=1
since
n <
(Fk+1 /Fk) r+1.

Now we define a complete sequence to be almost minimal if it can be made minimal by
deleting a finite subsequence.
Corollary 6. If n is even, the sequence defined in Theorem 2 is almost minimal.

Proof. The sequence {ai} defined in Theorem 2 is given by taking
_ n
e = [Fy, /AT

for each positive integer k # 2, 1y = Zn - 2, and taking ai = FE when

k-1 k
Z r]_ < i< E rj .
j=1 i=1

Since e 2 1 for every k # 2, the sequence {ai} is onto the set {FE lk S N}. Since
{ai} is a complete sequence of non-decreasing terms, it satisfies properties (a) and (b) of
the nY distinguished sequence. For M as in Lemma 3, 1 = [e"] =r when k > M.
Thus, the minimal nth distinguished sequence can be obtained from the sequence {ai} by
deleting finitely many terms FE with k < M.

When n is even, Corollary 6 provides a fairly efficient means of constructing the nth
distinguished sequence in a finite number of steps. First M is determined by inspection,
for example, and then enough of the T terms FE are deleted to make the sequence satis-
fy property (c) of the distinguished sequence, for k = 3, 4, -+, M - 1. For example, when
n=4, wehave M =5 and r{y =1, rp =14, 13 =5, 1, =7, rk=6 (k 25). So the
sequence of Theorem 2 has fifteen 1's, five 16's, seven 81's, and six Ff{'s for all k 2
5. Since none of the F‘l‘{ can be deleted for k < 5, this sequence is already the fourth dis-
tinguished sequence.
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