COUNTING OMITTED VALUES

GRAHAM LORD

Temple University, Philadelphia, Penn. 19122

1. INTRODUCTION

H. L. Alder in [1] has extended J. L. Brown, Jr.'s result on complete sequences [2] by showing that if $\left\{P_{i}\right\}_{i=1,2}, \ldots$ is a non-decreasing sequence and $\left\{k_{i}\right\}_{i=1,2, \ldots}$ is a sequence of positive integers, then with $P_{1}=1$ every natural number can be represented as

$$
\sum_{i=1}^{\infty} \alpha_{i} P_{i}
$$

where $0 \leq \alpha_{i} \leq k_{i}$ if and only if

$$
P_{k+1} \leq 1+\sum_{i=1}^{n} k_{i} P_{i}
$$

for $\mathrm{n}=1,2, \cdots$. He also proves for a given sequence $\left\{\mathrm{k}_{\mathrm{i}}\right\}_{\mathrm{i}=1,2, \ldots}$ there is only one non-decreasing sequence of positive integers $\left\{P_{i}\right\}_{i=1,2, \ldots}$ for which the representation is unique for every natural number, namely the set $\left\{P_{i}\right\}=\left\{\phi_{i}\right\}_{i=1,2}, \ldots$ where $\phi_{1}=1, \phi_{2}=$ $1+\mathrm{k}_{1}, \quad \phi_{3}=\left(1+\mathrm{k}_{1}\right)\left(1+\mathrm{k}_{2}\right), \cdots, \phi_{\mathrm{i}}=\left(1+\mathrm{k}_{1}\right)\left(1+\mathrm{k}_{2}\right) \cdots\left(1+\mathrm{k}_{\mathrm{i}-1}\right), \cdots$.

This paper investigates those natural numbers not represented by the form

$$
\sum_{i=1}^{\infty} \alpha_{i} P_{i}
$$

for $0 \leq \alpha_{i} \leq k_{i}$ where $\left\{k_{i}\right\}$ is as above and $\left\{P_{i}\right\}_{i=1,2, \ldots}$ is a necessarily increasing sequence of positive integers satisfying
(1)

$$
P_{n+1} \geq 1+\sum_{i=1}^{n} k_{i} P_{i} \quad n=1,2, \cdots
$$

When specialized to $k_{i}=1$ for all i the results obtained include those in Hoggatt's and Peterson's paper [3].

2. UNIQUENESS OF REPRESENTATION

Theorem 1. For P_{i} satisfying (1), the representation of the natural number N as

$$
\sum_{i=1}^{\infty} \alpha_{i} P_{i}
$$

where $0 \leq \alpha_{i} \leq \mathrm{k}_{\mathrm{i}}$ is unique.
Proof. Let N be the smallest integer with possibly two representations

$$
\mathrm{N}=\sum_{\mathrm{s}=1}^{\mathrm{n}} \alpha_{\mathrm{s}} \mathrm{P}_{\mathrm{s}}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \beta_{\mathrm{t}} \mathrm{P}_{\mathrm{t}}
$$

where $\alpha_{\mathrm{n}} \neq 0 \neq \beta_{\mathrm{m}}$.
If $\mathrm{m} \neq \mathrm{n}$ assume $\mathrm{m}>\mathrm{n}$. Then by (1)

$$
\sum_{s=1}^{n} \alpha_{s} P_{s} \leq \sum_{s=1}^{n} k_{s} P_{s} \leq P_{n+1}-1 \leq P_{m}-1 \leq \sum_{t=1}^{m} \beta_{t} P_{t}-1<\sum_{t=1}^{m} \beta_{t} P_{t}
$$

Thus, $m=n$. Either $\alpha_{n} \geq \beta_{n}$ or $\alpha_{n} \leq \beta_{n}$. Suppose without loss of generality $\alpha_{n} \geq \beta_{n}$. The natural number

$$
\sum_{t=1}^{n-1} \beta_{t} P_{t}=\sum_{s=1}^{n-1} \alpha_{s} P_{s}+\left(\alpha_{n}-\beta_{n}\right) P_{n}
$$

and since it is less than N it has only one representation. Hence $\alpha_{\mathrm{S}}=\beta_{\mathrm{S}}$ for $\mathrm{s}=1,2$, \cdots, n, i.e., N has a unique representation.

3. OMITTED VALUES

Definition. For $x \geq 0$ let $M(x)$ be the number of natural numbers less than or equal to x which are not represented by

$$
\sum_{i=1}^{\infty} \alpha_{i} P_{i}
$$

Theorem 2. If

$$
\mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}, \quad \alpha_{\mathrm{n}} \neq 0
$$

is the largest representable integer not exceeding the positive number x then

$$
\mathrm{M}(\mathrm{x})=[\mathrm{x}]-\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}} \phi_{\mathrm{i}},
$$

where [] is the greatest integer function.
Proof. By Theorem 1, it is sufficient to show the number, $R(x)$, of representable integers not exceeding x, equals

$$
\sum_{i=1}^{n} \alpha_{i} \phi_{i}
$$

But $R(x)=R(N)$ from the definition of N. Now all integers of the form

$$
\sum_{i=1}^{n} \beta_{i} P_{i}
$$

with the only restriction that $0 \leq \beta_{\mathrm{n}}<\alpha_{\mathrm{n}}$ are less than N since:

$$
\begin{aligned}
\sum_{i=1}^{n} \beta_{i} P_{i} & \leq \sum_{i=1}^{n-1} k_{i} P_{i}+\beta_{n} P_{n} \\
& \leq\left\{1+\beta_{n}\right\} P_{n}-1 \\
& <\alpha_{n} P_{n}+\sum_{i=1}^{n-1} \alpha_{i} P_{i}=N .
\end{aligned}
$$

Again by the uniqueness of representation to form

$$
\sum_{i=1}^{n} \beta_{i} P_{i}, \quad 0 \leq \beta_{n}<\alpha_{n}
$$

there are α_{n} choices for $\beta_{\mathrm{n}}, \quad\left\{1+\mathrm{k}_{\mathrm{n}-1}\right\}$ choices for $\beta_{\mathrm{n}-1}, \quad\left\{1+\mathrm{k}_{\mathrm{n}-2}\right\}$ choices for $\beta_{\mathrm{n}-2}$, \cdots, and $\left\{1+\mathrm{k}_{1}\right\}$ choices for β_{1}; in all there are $\alpha_{\mathrm{n}} \phi_{\mathrm{n}}$ numbers.

It remains to count numbers of the form

$$
\alpha_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}+\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \beta_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}
$$

which do not exceed

$$
N=\alpha_{n} P_{n}+\sum_{i=1}^{n-1} \alpha_{i} P_{i}
$$

That is the number of integers

$$
\sum_{i=1}^{n-1} \beta_{i} P_{i} \leq \sum_{i=1}^{n-1} \alpha_{i} P_{i}
$$

Hence

$$
R\left(\sum_{i=1}^{n} \alpha_{i} P_{i}\right)=\alpha_{n} \phi_{n}+R\left(\sum_{i=1}^{n-1} \alpha_{i} P_{i}\right)
$$

and because $\mathrm{R}\left\{\alpha_{1} \mathrm{P}_{1}\right\}=\alpha_{1}=\alpha_{1} \phi_{1}$ then

$$
R\left(\sum_{i=1}^{n} \alpha_{i} P_{i}\right)=\sum_{i=1}^{n} \alpha_{i} \phi_{i}
$$

[The representable positive integers less than or equal to $\alpha_{1} P_{1}$ are $P_{1}, 2 P_{1}, \cdots, \alpha_{1} P_{1}$.] This completes the proof.

As P_{i} is representable, the theorem give $M\left(P_{i}\right)=P_{i}-\phi_{i}$ and the following result is immediate.

Corollary.

$$
M\left(\sum_{i=1}^{n} \alpha_{i} P_{i}\right)=\sum_{i=1}^{n} \alpha_{i} M\left(P_{i}\right)=\sum_{i=1}^{n} M\left(\alpha_{i} P_{i}\right) .
$$

Note that if $k_{i}=1$ for all $i=1,2, \cdots$, Theorems 3 and 4 in [3] are special cases of the above theorem and corollary.

4. SOME APPLICATIONS

The two sequences $P_{n}=F_{2 n}$ and $P_{n}=F_{2 n-1}, n=1,2, \cdots$ mentioned in [3] satisfy Theorems 1 and 2 for $k_{i}=1$ i $=1,2, \cdots$. However,

$$
1+2\left(\mathrm{~F}_{2}+\mathrm{F}_{4}+\cdots+\mathrm{F}_{2 \mathrm{n}}\right)=\mathrm{F}_{2 \mathrm{n}+2}+\mathrm{F}_{2 \mathrm{n}-1}-1 \geq \mathrm{F}_{2 \mathrm{n}+2}
$$

with equality only when $n=1$, and

$$
1+2\left(\mathrm{~F}_{1}+\cdots+\mathrm{F}_{2 \mathrm{n}-1}\right)=\mathrm{F}_{2 \mathrm{n}+1}+\mathrm{F}_{2 \mathrm{n}-2}+1>\mathrm{F}_{2 \mathrm{n}+1}
$$

Consequently, by Alder's result,
Theorem 3. Every natural number can be expressed as

$$
\sum_{i=1}^{\infty} \alpha_{i} F_{2 i}
$$

and as

$$
\sum_{i=1}^{\infty} \beta_{i} F_{2 i-1}
$$

where α_{i} and β_{i} are 0,1 , or 2 .
To return to the general case, let $\left\{\mathrm{k}_{\mathrm{i}}\right\}$ be a fixed sequence of positive integers; then any sequence $\left\{P_{i}\right\}$ satisfying (1) also satisfies $P_{n} \geq \phi_{n}$ for all n. This follows from $P_{1} \geq 1=\phi_{1}$ and induction:

$$
P_{n} \geq 1+\sum_{i=1}^{n-1} k_{i} P_{i} \geq 1+\sum_{i=1}^{n-1} k_{i} \phi_{i}=\phi_{n} .
$$

Hence by the corollary

$$
M\left(\sum_{i=1}^{n} \alpha_{i} P_{i}\right)=\sum_{i=1}^{n} \alpha_{i}\left\{P_{i}-\phi_{i}\right\} \geq 0
$$

with equality iff $P_{i}=\phi_{i}$. Furthermore, since $k_{i} \geq 1$ then $\left\{\phi_{i}\right\}$ is an increasing sequence and so for every natural number N there exist α_{i} such that

$$
N<\sum_{i=1}^{\infty} \alpha_{i} \phi_{i} .
$$

Therefore

$$
M(N) \leq M\left(\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}\right)=0
$$

i.e., N has a representation in the form

$$
\sum_{i=1}^{\infty} \beta_{i} \phi_{i}
$$

These facts, together with Theorem 1, give
Theorem 4. If $\left\{\mathrm{k}_{\mathrm{i}}\right\}$ is any sequence of positive integers, then every natural number has a unique representation as

$$
\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}
$$

where $0 \leq \alpha_{i} \leq k_{i}$ and $\phi_{1}=1, \phi_{2}=\left(1+k_{1}\right), \cdots, \phi_{i}=\left(1+k_{1}\right) \cdots\left(1+k_{i-1}\right)$.
Corollary. If r is a fixed integer larger than 1 then every natural number has a unique representation in base r.

Proof. In Theorem 4, take $1+\mathrm{k}_{\mathrm{i}}=\mathrm{r}$ for all i .

5. REFERENCES

1. H. L. Alder, "The Number System in More General Scales," Mathematics Magazine, Vol. 35 (1962), pp. 145-151.
2. John L. Brown, Jr., "Note on Complete Sequences of Integers," The American Math. Monthly, Vol. 67 (1960), pp. 557-560.
3. V. E. Hoggatt, Jr., and Brian Peterson, "Some General Results on Representations," Fibonacci Quarterly, Vol. 10 (1972), pp. 81-88.
