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H-227 Proporsedby L Carlitz, Duke University, Durham, North Carolina. 

Show that 

m n 
E E (-Dm+n-j-k h)(i) <aj + ck)m(bj + dk)n 

j=0 k=0 \ / \ / 

min(m,n) 
n! £ (^(jja^^eK.)1 

= mini 
r=0 

In part icular , show that the Legendre polynomial P (x) satisfies 

n 

(nt)2Pn(x) = J2 ( -1 )3"*(^)(k)(a j + Ck)R(bi + dk)R 

j ,k=0 

where 

ad = ^-(x + 1), be = - ( x - 1) . 

H-228 Proposed by R. £ Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

F 
Define the sequence ( u n ) n as follows; u ~ (F ) (n > 1), where F denotes ,, M L nJ n = i n n n 

the n Fibonacci number. 
501 
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(1). Find a recurrence relation for \ u n j . and 
(2). Find a generating function for the sequence, \ u n / _- . 

H-229 Proposed by L Carliiz, Duke University, Durham, North Carolina. 

A triangular a r r ay 
A(n,k) ( 0 < k < n ) 

is defined by means of 

( A(n + 1, 2k) = A(n, 2k - 1) + aA(n, 2k) 
(*) < 

I A(n + 1, 2k + 1) = A(n, 2k) + bA(n, 2k + 1) 

together with 

A(0,0) ~ 1, A(0,k) = 0 (k + 0) . 

Find A(n,k) and show that 

] £ A<n> 2k)(ab)k = a(a + b ) n ~ \ ^ A(n, 2k + l)(ab)k = (a + b) 
k k 

SOLUTIONS 

ARRAY OF HOPE 

H-195 Proposed by Verner £ Hoggatt, Jr„, San Jose State University, San Jose, California 

Consider the a r r ay indicated below: 

n-1 

1 

1 

3 
5 
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89 

1 

2 

4 

9 

22 

56 

145 

1 
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38 

1 

4 

11 

27 

65 

1 

5 

16 

1 

6 

22 1 1 

(i) Show that the row sums are F 0 , n > 2. 
2n (ii) Show that the rising diagonal sums are the convolution of 

^ n - l C o a n d (uCo; 2 , 2 ) } ^ , 
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the generalized numbers of Harr i s and Styles. 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Let A(n,k) denote the element in the n row and k column. Then (presumably) 

and 

Put 

Then 

Next 

so that 

A ( n ' X ) = F 2 n - 3 ( n > 1} 

[A(n, 2k) = A(n, 2k - 1) + A(n - 1, 2k) 
(k > 1) 

[A(n, 2k + 1) = A(n - 1, 2k + 1) + A(n - 2, 2k) 

F(x,y) = X ^ A ( n , 2k>xtV 
n=l k 

n 2k 

n 2k+l G<x>y> = 2 ] C A ( n > 2 k + 1)xRy 
n=l k 

OO 

A(x) = ^ A ( n , l ) x n . 
n=l 

A(x) = x + £ F 2 n . 3 x n = x + x ^ F ^ ^ x 1 1 

n=2 n=l 

x - x2 x - 2x2 
= X + X 

1 - 3x + x^ 1 - 3x + x^ 

n 2k F(x,y) = ]jT ^ (A(n, 2k - 1) + A(n - 1, 2 k ) ) x n y 
n k 

= xF(x,y) + yG(x,y) , 

(1) (1 - x)F(x,y) = yG(x,y) . 

Also4 
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G(x,y) = y ^ A ( n , l ) x n + ^ ] £ (A(n - 1, 2k + 1) + A(n - 2, 2k)) x 
1 n=2k>0 

= yA(x) + x J2J2 A(n' 2k + 1)xIlyk + x2yJ2J2 A(n' 2k^ny2k 

n = l k > 0 n = l k > 0 

= y(l - x)A(x) + xG(x,y) + x2yF(x,y) , 
so that 

(2) (1 - x)G(x5y) = x2yF(x,y) + x ( 1 " x ) ( 1 " 2 x ) y . 
1 - 3x + x2 

It follows from (1) and (2) that 

((1 - x)» - x V ) F ( x , y ) = x ( 1 - x ) ( 1 - 2 x ) y 2 

1 - 3x + x2 

(3) 
((1 - x)2 - x2y2)G(x,y) 

1 - 3x + x; 

n 2k+l 

2 v2„2\nfv ,A = x( l - x)2(l - 2x)y 

Hence 

(4) ((1 - x)* - x V ) T T A(n ,k)x n y k = x ? ( 1 ~ x ) ( 1 ~ 2 x ) ( 1 " x + ^ 
^"r1 i - 3x + x2 

n k 

For y = 1 this reduces to 

£xn£A<n,k) 
n k 

x(l -
1 -

X + -

x)(2 - x) 
3x + x2 

X 

1 - 3x + xz 

x + 2>2n x n ' 
1 

so that 

2 A(n,k) = F2n (n > 1) . 

If we take y = x, Eq. (4) reduces to 
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OO 

Vxny>(n-k5k) = x2(1 - ̂  - 2 x > 
(1 - x - x2)( l - x + x 2 ) ( l - 3x + x2) n=2 k 

S F2n-lx t l x ( l - 2x) 
(1 - X - X 2 ) ( l - X + X 2 ) 

This expresses the rising diagonal sums 

n-1 
2 A(n - k, k) 
k=l 

as convolutions as stated. 
Remark. It follows from (3) that 

2k-1 2k w \ 1 - 2x \~^ x y 
F(x'y) =

 1 , + 2 ̂  ^ fci 
1 - 3x + x? . 1 (1 - x) 

^ 2k- l 2k-1 ~/ v 1 - 2x \ ^ x y 
G ( x , y ) = ^ _ ^ - ^ 2 

1 - 3x + x^ . 1 (1 - x) 

so that 

(5) 

E A(n.2k)*> = ( 1 " 2 x ) x 2 k " ' 2k i 
T \ (1 - 3x + x 2 ) ( l - x ) 2 ^ 1 

n=2k-l 

£ A(n, 2k - l)xn = (1 " 2 X ) x 2 k - 1
 2 k 2 

t T i (1 - 3x + x2)(l - x)2k-2 

n=2k-l 

By means of (5) we can obtain explicit formulas for A(n,k). Since 

OO 

2 ^ F 2 r -1 : 1 - 2x _ V T, x
r 

1 - 3x + x2
 r = Q 

it follows that 

oo oo oo 

s 
X 

n=2k-l r=0 s=0 
Therefore, 
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n-2k+l 

r=0 V ' 

Similarly 

n-2k+l 

A(n,2k-1) = £ (Vk- ' s 'K r - l (k > " • 
r=0 ' 

/ t o solved by the Proposer. 

PARTITION 

H-196 Proposed by J. B. Roberts, Reed Collage, Portland, Oregon. 

(a) Let A0 be the set of integral par ts of the positive integral multiples of T, where 

T = 1 + ^ 
2 ' 

and let A +1» m = 0, 1, 2, • • • , be the set of integral par ts of the numbers nT2 

for n c~ A . Prove that the collection of Z of all positive integers is the disjoint 
union of the A.. 

J 
(b) Generalize the proposition in (a). 

Solution by L Carlltz, Duke University, Durham, North Carolina. 

1. Put 

a(n) = [nT] , b(n) = [nT2 ] = [n(T + 1)] = a(n) + n . 

Also for brevity put 

(a) = (a(n)|n = 1, 2, 3, • • • } , 

(b) = {b(n)|n = 1, 2, 3, • • • } . 

It is well known that* 

(*) Z + = (a) U (b) . 

Put 

(bka) = {bka(n)|n = 1, 2, 3, • • •} , 
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where juxtaposition denotes composition. Then it follows at once from (*) that 

Z + = (a) U (ba) U (b2) 
= (a) U (ba) u (b2a) U (b3) , 

and so on. Clearly this implies 
oo oo 

Z + = U (b a) = U A, . 
k=0 k=0 K 

2. Let a,fi be positive irrational numbers such that 

(1/a) + (l/j3) = 1 
and put 

a(n) = [an] , b(n) = [j3n] . 
Then it is well known that 

Z + = (a) U (b) , 
where, as above, 

(a) = {a(n)|n = 1, 2, 3, • • •} , b(n) = {b(n)|n = 1, 2, 3, • • • } . 
Hence 

Z + = (a) U (ba) U (b2) 
= (a) U (ba) U (b2a) U (b3) , 

and so on. Thus 

Z + = U (bka) . 
k=0 

Remark. The functions a(n), b(n) in 1 a re studied in considerable detail in the paper 
by L. Carl i tz , V. E. Hoggatt,, J r . , and Richard Scoville: "Fibonacci Representa t ions / ' F ib-
onacci Quarterly, Vol. 10, No. 1, pp. 1-28. 

Also solved by the Proposer. 

Editorial Note: See Beatty's Theorem (American Math. Monthly, 33 (1926), 159, and34 (1927) 
159.) 

The editor wishes to acknowledge solutions to H-194 by L. Frohman, P . Bruckman, and J . 

Ivie. 

Editorial Note: The following l is t represents previous problem proposals (less than or equal 
to H-100) which, to date, have not been solved: 22, 23, 40, 43, 46, 60, 61, 73, 76, 77, 84, 
87, 90, 91, 94, and 100. Starting in the next section, we shall r e - run some of these proposals. 

ERRATA 

On Problem H-218, April , 1973, 
please change the matrix to read: 

J nxn 


