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That Pasca l ' s triangle and two classes of generalized Pascal tr iangles, the multinomial 
coefficient a r rays and the convolution a r rays formed from sequences of sums of rising diag-
onals within the multinomial a r r a y s , share sequences of k X k unit determinants was shown 
in [ l ] . Here, sequences of k X k determinants whose values are binomial coefficients in the 

co 
l a r numbers are explored. 
k column of Pasca l ' s triangle o r numbers raised to a power given by the (k- 1) triangu-

1. INTRODUCTION 

Fi rs t , we imbed Pasca l ' s triangle in rectangular form in the n X n matr ix P 
where V-
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Pasca l ' s triangle in left-justified form can be imbedded in the nX n matr ix A = (a . . ) , 

where 
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To avoid confusion, note that when Pasca l ' s triangle is imbedded in matr ices throughout this 
paper, we will number the rows and columns in the usual matr ix notation, with the leftmost 
column the first column. If we refer to Pasca l ' s triangle itself, however, then the leftmost 
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column is the zero column, and the top row is the zero row. While we are dealing with 
infinite matr ices he re , the multiplication of n X n matr ices provides an easily understood 
presentation. As in [ l ] , compositions of generating functions actually lie at the heart of the 
proofs. 

Let us define an arithmetic progression of the r order , denoted by (AP) , as a 
sequence of numbers whose r row of differences is a row of constants, but whose ( r - 1) 
row is not. A row of repeated constants is an (AP)0. The constant in the r row of differ-
ences of an (AP) will be called the constant of the progression. That the i row of P a s -
cal ' s triangle in rectangular form is an (AP). with constant 1 was proved in [ l ] . We will 
have need of the following theorem from [ l ] , [2]. 

Theorem 1.1 (Eves' Theorem). Consider a determinant of order n whose i row 
(i = 1, 2, • • • , n) is composed of any n successive te rms of an (AP) with constant a.. 
Then the value of the determinant is the product a^ 2 • • • a . 

2. BINOMIAL COEFFICIENT DETERMINANT VALUES FROM PASCAL'S TRIANGLE 

Return again to matrix P of (1.1). Suppose that we remove the top row and left col-
umn, and then evaluate the k x k determinants containing the upper left corner. Then 

2| = 2, 3 , 
2 3 4 
3 6 10 
4 10 20 

= 4 

and the k x k determinant has value (k + l ) . 
Proof is by mathematical induction. Assume that the (k - l ) x (k - 1) determinant has 

value k. In the k x k determinant, subtract the preceding column from each column suc-
cessively for j = k, k - 1, k - 2, • • • , 2. Then subtract the preceding row from each row 
successively for i = k, k - 1, k - 2, • • • , 2, leaving 
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= 1 + k . 
Returning to matrix P , take 2 x 2 determinants along the 2nd and 3rd rows: 

= 1, = 3, 
4 

10 1 = 6, 
4 

10 
5 

15 10, 

giving the values found in the second column of Pasca l ' s left-justified tr iangle, for 
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(0 0 i l ) 
('J1) ( J ; 2 ) 

- C i 1 ) 
by simple algebra. Of course, 1 X I determinants along the second row of P yield the suc-
cessive values found in the first column of Pasca l ' s triangle. Taking 3 x 3 determinants 
yields 
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= 4, j 
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the successive entr ies in the third column of Pasca l ' s triangle. In fact, taking successive 
st 

k x k determinants along the 2nd, 3rd, • • • , and (k + 1) rows yields the successive en-
t r ies of the k column of Pasca l ' s triangle. 

To formalize our statement, 
Theorem 2.1. The determinant of the k x k matr ix R(k, j) taken with its f irst column 

the j column of P , the rectangular form of Pasca l ' s triangle imbedded in a matr ix , and 
its f irst row the second row of P , is the binomial coefficient 

(>-rk) 
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det R(3,3) + d e t R(4,2) 
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F i r s t , the preceding column was subtracted from each column successively, j = k, k - 1, 
• • • , 2, and then the preceding row was subtracted from each row successively for i = k, 
k - 1, • • • , 2. Then the determinant was made the sum of two determinants, one bordering 
R(3,3) and the other equal to R(4,2) by adding the j column to the (j + 1) , j = 1, 2, 
• •. , k - 1. 

By following the above procedure, we can make 

detR(k, j ) = detR(k - 1, j) + det R(k, j - 1) . 

We have already proved that 

det R(k, 1) = 1 = ( k * ° j , det R(k,2) = k + l = | k * 1 j for all k, 

d e t R ( l , j ) = j = | j + ° J , de tR(2 , j ) = ( j + M for all j . 

If 

de tR(k - l , j ) = (j £ * " 2 J and det R(k, j - 1) = P + k ' 2 j , 

then 

det R(k .i» = ( )
k

+^2)*( j +r2) = ( j + r i ) 
for all k and all j by mathematical induction. 

Since P is its own transpose, Theorem 2.1 is also true if the words "column" and 
"row" a re everywhere exchanged. 

T 
Consider Pasca l ' s triangle in the configuration of A , which is j u s tPascaPs rectangu-

la r a r r ay P with the i row moved (i - 1) spaces right, i = 1, 2, 3, • • • . Form k x k 
T matr ices Rf(k, j) such that the f irs t row of Rf (k, j) is the second row of A beginning with 

th T 
the j column of A . Then AR'(k, j - 1) = R(k,j) as can be shown by considering their 
column generating functions, and since det A = 1, de tR f (k , j - 1) = de tR(k , j ) , leading us 
to the following theorems. 

T Theorem 2.2. Let A be the n x n matrix containing Pasca l ' s triangle on and above 
its main diagonal so that the rows of Pasca l ' s triangle are placed vertically. Any k x k sub-

T T 
matrix of A selected with its first row along the second row of A and its first column 

th T 
the j column of A , has determinant value 

( t +
i , - 2 ) 

T Since A is the transpose of A , wording Theorem 2.2 in te rms of the usual Pascal 
triangle provides the following. 
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Theorem 2.3. If Pascal1 s triangle is written in left-justified form, any k x k matrix 
selected within the a r ray with its f irst column the first column of Pasca l ' s triangle and its 
f irst row the i row has determinant value given by the binomial coefficient 

(k + i - 1 ] 
k / 

Returning to the rectangular Pascal matr ix P , in Theorem 2.1 , the first row of P 
was omitted to form the k x k matr ix considered. Now we omit any one row. 

Theorem 2.4. Let R.(k,j) be the k x k matrix formed from the rectangular Pascal 
matr ix P so that its first k rows are the first (k + 1) rows of P with the i row omit-
ted, and its first column is the j column of P. Then detR.(k, j ) is given by the binomial 
coefficient 

(i-.i:i) 
Proof. Notice that R ^ k J ) = R(k,j) of Theorem 2.1. If the f irst row is not the row 

th st 
omitted, by successively subtracting the p column of R (k, j) from the (p + 1) column, s 
p = k - 1, k - 2, *' * , 1, the new a r ray is R _1(k - 1, j + 1) bordered by a first row with 
f irst element one and all others zero , so that 

d e t R (k,j) = d e t R n(k - 1, j + 1) . 
S S —X 

If the theorem holds when i = s - 1, then 

« B ^ k -1. j • i) - ( j :» - . y . ' v / i ) - (i: i:;) • «».*.». 

completing a proof by mathematical induction. 

3. OTHER DETERMINANTS WITH SPECIAL VALUES 

Suppose we form a matrix using the zero , second, fourth, • • • , (2r) , • • • , rows of 
Pasca l ' s triangle written in rectangular form. Then the columns contain even subscripted 
elements only. Since the i column is still an i order arithmetic progression, Eves ' 
Theorem should apply. The constant for the j column will be 2̂ ~" , ra ther than 1, and 
the determinant of such a k x k matrix will be 2°-21-22 • • • -2 or 2^ " ' J. To c l a r -
ify this, we present such a 5 x 5 matr ix below, which has determinant 2°'21'22-23-24 = 210. 
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In this section, we will prove the following: 
Theorem 3.1. Form an n x n matrix in the upper left corner of Pascal1 s triangle in 

rectangular form (or in left-justified form) using the rows which are multiples of r so that 
(lr) row 

[n(n- l ) /2] 
the (i + 1) row in the matr ix is the f irs t n entr ies of the (ir) row of the Pascal a r ray 

th 
i = 0, 1, 2, • • • , n - 1 . The determinant of the matr ix is rL 

To prove this theorem, we require more information about r1*1 order arithmetic 
progressions. 

Lemma 3.1. Let j c . i , j = 0 , 1, 2, • • • , be a sequence of consecutive elements of an 
3* th 

(AP). with constants a.. Then the k difference sequence has elements given by 

2>p(p)«*- ^ 2>'(i)°j-* - •» 
p=0 X ' p=0 X ' 

Proof. We l is t successive differences: 

1st: 

2nd: 

c. - c. n 3 3-1 

(c. - c. n ) - (c. - c. 0 ) = c. - 2c. n + c. n 3 J - l J - l 3-2 3 j - 1 j - 2 

3 rd : <CJ " ^ j - l + °J-2> " ( CJ-1 " 2°J-2 + °j-3> 

c. = 3c. . + 3c. n - c. 0 3 3-1 3-2 3-3 

If the (k - 1) difference has the form of Lemma 3.1, then the k difference i s given by 
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k-1 , . k-1 

E'-Wvkp-E'-WVWp 
p=0 \ / p=o \ / 

• v l > p ( k P % + I> p ( k ; % *<-»V 
p=l \ / p = l \ / 

= E<-»t)«,-p • 
p=0 \ / 

which establishes the form given in the Lemma. When k = i, then the i difference is the 
constant of the sequence. 

Now form an n x n matrix P* with its (i + I)01' row the first n entr ies of the (ri) 
)f P 

given by 

* with its (i + 1) row the first n entri c iU~ '—'x 

s t row of Pasca l ' s triangle in rectangular form. Then the elements in its (k + 1) column are 

/ ( r - i ) k \ I k ) 
The k difference sequence for these elements is 

E<-»p(p)vP=E<-»p(p)(<r-/k) k = r 

st applying Lemma 3.1 and a formula given by Knuth [3]. The (k - 1) difference is not a 
constant, however, so that the sequence is an (AP), . By Eves ' Theorem, the determinant, 
,, .„ , o i 2 n ~ l n(n- l ) /2 
then, will be r ^ r 1 - ^ • • • -r = r . 

If an n x n matrix A* is formed using only the (ri) rows of Pasca l ' s left-justified 
T T 

triangle, and A is the transpose of A defined in (1.2), then A*A = P*, since the row 
r( i - l ) T 

generators of A* are (1 + x) , and of A , 

(-x-r T making the row generators of A*A 

(^.(.•^.(^r ( i - « + i 

which we recognize as the row generators of P*, making d e t A * = det P * = r ~ ' . 
(Here, we apply the method of proof using generating functions as in [ l ] . ) 
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For example, when n = 4 and r = 2, A*AT becomes 

[Dec. 

1 0 0 0 
1 2 1 0 
1 4 6 4 
1 6 15 20 

1 1 1 1 
0 1 2 3 
0 0 1 3 
0 0 0 1 

r i 1 1 1" 
1 3 6 10 
1 5 15 35 
1 7 28 84 

In fact, we have the same resul ts if the row numbers taken to form P * or A* form 
an arithmetic progression. 

st Theorem 3.2. Form an n X n matrix which has i ts (i + 1) row the f irst n entries 
of the (ri + s) th row of Pascal1 s triangle in rectangular form, s ^. 0, i 

n(n- l ) /2 
0, 1, 

The determinant of the matr ix is r 
Proof. Subtract the (k - 1) column from the k column for k = n, n - 1 , • • • , 2, 

Repeating this process s times gives the matr ix P*. 
Reapplying Eves ' Theorem, Theorem 3.1 can be extended to the following. 

st Theorem 3.3. Form an n Xn matrix such that its (i + 1) row consists of any n 
successive entries whose subscripts differ by r from the i row of Pasca l ' s triangle 
written in rectangular form, i = 0, 1, • • • , n - 1. The determinant of the matr ix is rn^n~ ' . 

The theorems of this section are special cases of the more general theorem which 
follows. 

st Theorem 3.4. Form an n X n matr ix which has i ts (i + 1) row the subsequence 
{c. } , s a rb i t rary , of an (AP). {c^} with constant a., i = 0, 1, • • • , n - 1. Then the 
determinant is r a0a1a2 • n -1 

The proof, which is omitted, hinges upon showing that ( c . } is an (AP). with con-
lr+s I 

stant r a. and applying Eves1 Theorem. 
The theorems of this section can also be stated for columns. Next, the resul ts can be 

extended to convolution a r rays and to multinomial coefficient a r rays by considering certain 
matr ix products. 

4. MULTINOMIAL COEFFICIENT ARRAYS 
HK Let the a r r ay of multinomial coefficients arising from expansions of (1 + x + « • • +x ) , 

m > 1, n > 0, be called the m-multinomial coefficient a r ray . Let the left-justified m -
multinomial coefficient a r r ay be imbedded in an n X n matrix A . Let the n X n matrix 
F contain the rows of A as the columns of F written on and below the main diagonal. 

m m m ° 
Let A be the transpose of the n Xn matrix A of (1.2). Then the matr ix equation 

F , A J 
m - 1 m 2, 3, 

was proved in [ l ] . Since any k x k submatrix of A m having its first row along the second 
row of A and its f irst column the j column of A^ is the product of a submatrix of m J m v 
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F m-: 
determinant will be given by 
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F 1 with a unit determinant and a k x k submatrix of A satisfying Theorem 2.2, its 

( k + ^ - 2 ) -

Since the transpose of A is A ^ m m 
coefficient a r ray . 

Theorem 4.1 . 

we restate these resul ts in te rms of the m-multinomial 

The determinant of the k x k matr ix formed with its f irst column the 
f i rs t column of any multinomial coefficient a r r a y in left-justified form (the column of succes-
sive whole numbers) and its f i rs t row the i row of that multinomial coefficient a r r ay , has 
value given by the binomial coefficient 

( ' • ! - ) 

T st 
Now let (A*)' be the transpose of the n x n matr ix A* formed with its (i + 1) row 

, n - 1. the first n entr ies of the (ri) row of Pascal1 s left-justified triangle, i = 0 , 1 , 
T T Then the matr ix product F -.(A*) = (A* ) , where A* is the n x n matr ix formed u s -,V m - l v ' v m ' m 

ing only the (ri) rows of the m-multinomial coefficient a r ray , i = 0, 1, • • • , n - l , as 
can be proved by examining the column generating functions. For , the column generators of 
F ^ are G.(x) = [ x ( l + x + - - . +X 1 1 1 " 1 ) ] 3 " 1 and of (A*)T, H.(x) = (1+x) r ( ; i ""1 ) , j = 1, 

m-± 3 rn J 
2, • • • , n, making the column generators of F 1(A*) be H.(G.(x)) = (1 + x + x2 + • •« 

m r ( i - l ) n i - i j j ^ 
+ x ) u , which we recognize as the column generators for the matr ix (A* ) claimed 
above. Again, considering the very special products of submatrices involved, we are led to 
the following result . 

Theorem 4.2. If any multinomial coefficient a r r ay is written in left-justified form,, the 
determinant of the k x k matr ix formed with its (i + 1) 

,th 
st row the f irst n entr ies of the 

k(k- l ) /2 
(ri) row of the multinomial a r ray , i = 0, 1, 2, • • • , k - 1, is given by r 

As an example, for n = 5 and r = 2, F-^A*) = (A}) becomes 
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• 

1 1 1 1 1 
0 2 4 6 8 
0 1 6 15 28 
0 0 4 20 56 
0 0 1 15 70 

1 1 1 1 1 
0 2 4 6 8 
0 3 10 21 36 
0 2 16 50 112 
0 1 19 90 266 

where (A|) has alternate rows of the trinomial coefficient a r r ay appearing as i ts columns, 
and the determinant equals 210. 

** T ** 
Further examination of a matr ix product, F ., (A ) , where the n x n matr ix A t m - l v m ' ' , m 

is formed with its (i + 1) row the first n entr ies of the (ri + s) row of the m-multinomial 
coefficient a r ray , s > 0 , i = 0, 1, 2, 
to the multinomial coefficients. 

1, shows that Theorem 3.2 can be extended 
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Theorem 4.3. Consider any left-justified multinomial coefficient ar ray . Form a k x k 
iltinomial 
k(k- l ) /2 

matr ix with its (i + 1) row the first n entries of the (ri + s) row of the multinomial 

a r ray , i = 0, 1, k - 1, s > 0. The determinant of that matrix is given by r 

5. THE FIBONACCI CONVOLUTION ARRAY AND RELATED ARRAYS 

The Fibonacci sequence, when convolved with itself j - 1 t imes, forms the sequence 
in the j column of the matr ix C below (see [l] and [4]) 
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n x n 

where the original sequence is in the leftmost column and the column generators a re given by 
[ 1/(1 - x - x2)] , j = 1, 2, • • • , n. If F 1 is the n x n matr ix formed as in Section 3 with 
the rows of Pasca l ' s triangle in vertical position on and below the main diagonal, and P is 
Pasca l ' s rectangular a r r ay (1.1), then FjP = C as proved in [1]. Now, since here sub-
matr ices of C taken along the second row of C are the product of submatrices of FA with 
unit determinants and similarly placed submatrices of P whose determinants are given in 
Theorem 2.1 , these submatrices of C have determinant values given by the same binomial 
coefficients found for P. 

The generalization to convolution triangles for sequences which are found as sums of 
rising diagonals of m-multinomial coefficient a r r ays written in left-justified form is not dif-
ficult, since the matr ix product F P yields just those a r rays as shown in [1]. We thus 
write the following theorem. 

Theorem 5.1. Let the convolution triangle for the sequences of sums found along the 
rising diagonals of the left-justified m-multinomial coefficient a r r ay be written in rectangular 
form and imbedded in an n x n matrix C*. Then the determinant of any k x k submatrix of 

fin 

C* selected with its first row along the second row of C* and its first column the j col-
umn of C* has determinant value given by the binomial coefficient 

( k + ^ ) 

st Now, let P* be the n x n matrix with its (i + 1) row the first n entr ies of the 
1, s > 0. Paralleling (ri + s) row of Pasca l ' s rectangular a r ray P , i = 0, 1, • • • , 

the development given for Theorem 5.1 but considering the matr ix product F P* which is 
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the n x n matr ix containing the (ri + s) rows of the convolution a r r ay for the rising diag-
onals of the given m-multinomial coefficient a r ray , we find that Theorem 3.2 extends to the 
following. 

s t Theorem 5.2. If a ,k x k matr ix is formed with its (i + 1) row the first n entries 
of the (ri + s) row of the rectangular convolution a r ray for the rising diagonals of any 
left-justified multinomial coefficient a r ray , i = 0, 1, • • • , k - 1, s > 0, then its deter-
minant has value r . 

Lastly, consider the sequence of sums of elements u (n; p, 1) found on the rising di-
agonals formed by beginning at the leftmost column of a left-justified m-multinomial coef-
ficient a r r ay and going up p and to the right one throughout the ar ray . (For the Pascal t r i -
angle, these numbers are the generalized Fibonacci numbers u(n; p, 1) of Harr i s and Styles 
[ 5 ] . ) Form the matr ix D (p, l) so that the sequence of elements having u (n; p, 1) as its 
sum lies (in reverse order) on its rows. D (p,l) will have a one for each element on its 
main diagonal and each column will contain the corresponding row of the m-multinomial a r -
ray but with (p - 1) zeros between entr ies , so that the generating functions for its columns 
are [x(l + x p + x 2 p -f • • . + x ( m " 1 ) p ) ] 3 , j = 1, 2, • • • , n. It was shown in [l] that D (p, 1)P 
gives the convolution triangle in rectangular form for the sequence u (n; p, 1). By examin-
ing the column generators , we also have that D (p , l )P* gives the a r ray containing the 
(ir + s) rows of the convolution triangle for the sequence u (n, p , 1). Putting all of this 
together, we write the following theorem. 

Theorem 5.3. Write the convolution triangle in rectangular form imbedded in an n x n 
matr ix C* for the sequence of sums found on the rising diagonals formed by beginning at 
the leftmost column and moving up p and right one throughout any left-justified multinomial 
coefficient ar ray . The k x k submatrix formed with its first row the second row of C* and 
its f irst column the j column of C* has determinant given by the binomial coefficient 

( ' • j - 1 ) 
The n x n matr ix formed with its (i + 1) row the first n entries of the (ri + s) row of 
the convolution triangle, i = 0, 1, • • • , n - 1, s > 0, has determinant equal tor" 
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