SPECIAL DETERMINANTS FOUND WITHIN GENERALIZED PASCAL TRIANGLES

MARJORIE BICKNELL and V. E. HOGGATT, JR,,

San Jose State University, San Jose, California

That Pascal's triangle and two classes ofgeneralized Pascal triangles, the multinomial
coefficient arrays and the convolution arrays formed from sequences of sums of rising diag-
onals within the multinomial arrays, share sequences of k Xk unit determinants was shown
in [1] Here, sequences of kX k determinants whose values are binomial coefficients in the
kth column of Pascal's triangle or numbers raised to a power given by the (k- 1)St triangu-
lar numbers are explored.

1. INTRODUCTION

First, we imbed Pascal's triangle in rectangular form in the nXn matrix P = (pij )s

where
_[i+i-2
Py ( i-1 ) ’
11 -
1 2 4
1 3 10 15
.1 P=l1 4 10 20 35
1 5 15 35 70

nXxn

Pascal's triangle in left-justified form can be imbedded in the nX n matrix A = (ai]. )

where
a., =(1 - 1),
ij ji-1
1 0 0 0 0 7
1 1 0 0 0
1 2 1 0 0
(1.2) A=l 3 3 1 o0
1 4 6 4 1

“nXn

To avoid confusion, note that when Pascal's triangle is imbedded in matrices throughout this
paper, we will number the rows and columns in the usual matrix notation, with the leftmost

column the first column. If we refer to Pascal's triangle itself, however, then the leftmost

469
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column is the zeroth column, and the top row is the zeroth row. While we are dealing with
infinite matrices here, the multiplication of n xn matrices provides an easily understood
presentation. As in [1], compositions of generating functions actually lie at the heart of the
proofs.

Let us define an arithmetic progression of the rth order, denoted by (AP)r, as a

sequence of numbers whose rth row of differences is a row of constants, but whose (r - 1)St
row is not. A row of repeated constants is an (AP),. The constant in the rh row of differ-

ences of an (AP)r will be called the constant of the progression. That the ith row of Pas-

cal's triangle in rectangular form is an (AP); with constant 1 was proved in [1]. We will
have need of the following theorem from [1], [2].

Theorem 1.1 (Eves' Theorem). Consider a determinant of order n whose ith TOW

i=1,2, - -, n) is composed of any n successive terms of an (AP)i_1 with constant a,.

Then the value of the determinant is the product a;a; --- a .

2. BINOMIAL COEFFICIENT DETERMINANT VALUES FROM PASCAL'S TRIANGLE

Return again to matrix P of (1.1). Suppose that we remove the top row and left col-

umn, and then evaluate the kx k determinants containing the upper left corner. Then

2 3 4
1
l2| =2, |2 3 =3, |3 10| =4,
10 20

and the k x k determinant has value (k + 1).
Proof is by mathematical induction. Assume that the (k - 1) X (k - 1) determinant has

value k. In the k xk determinant, subtract the preceding column from each column suc-

cessively for j =k, k-1, k-2, --+, 2. Then subtract the preceding row from each row
succegsively for i = k, k-1, k-2, -+-, 2, leaving

2 1 1 1 101 1 L I U

i 2 3 4 1 2 4 e 0 2 4

1 3 6 10 =11 3 10 !+ 0 3 6 10

1 4 10 20 1 4 10 20 -+ |0 4 10 20

o |
=1+ k.

Returning to mairix P, take 2 x 2 determinants along the 2nd and 3rd rows:

= 10, ~-°-,

10 15§

giving the values found in the second column of Pascal's left-justified triangle, for
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i 1 i <j . 1)

i+l i+ 2 z
2 2

by simple algebra. Of course, 1 x1 determinants along the second row of P yield the suc-

cessive values found in the first column of Pascal's triangle. Taking 3 x 3 determinants

yields
1 2 2 3 4 3 4 5
3 =1, 10 = 4, 6 10 15| = 10,
4 4 10 20 10 20 35

the successive entries in the third column of Pascal's triangle. In fact, taking successive
k x k determinants along the 2nd, 3rd, ---, and (k + l)St rows yields the successive en-
tries of the kth column of Pascal's triangle.

To formalize our statement,

Theorem 2.1. The determinant of the k x k matrix R(k,j) taken with its first column
the jth

its first row the second row of P, is the binomial coefficient

(59

column of P, the rectangular form of Pascal's triangle imbedded in a matrix, and

To illustrate,

3 4 5 6 3 1 1
6 10 15 21 6 4 5 6
det R(4,3) = |1 90 35 56| |10 10 15 21
15 35 70 126 15 20 35 56
3
3 4
T4 10 15
5 10 20 35
1 1 2 11
_lo 4 NE 4 5
0 10 15| |4 10 15
0 10 20 35 |5 10 =20 35
2 4 5
3 40 3 10 15
= 6 10 15 1+l 40 20 35
102035 5 15 35 70

det R(3,3) + det R(4, 2)

() () ()
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First, the preceding column was subtracted from each column successively, j =k, k-1,
-, 2, and then the preceding row was subtracted from each row successively for i =k,
k-1, --+, 2. Then the determinant was made the sum of two determinants, one bordering
R(3,3) and the other equal to R(4,2) by adding the jth column to the (j + 1)St, j=1, 2,
o, k-1,
By following the above procedure, we can make

det R(k,j) = detR(k - 1, j) + det R(k, j - 1) .

k+1
( K )forall k,

1) for all j.

We have already proved that

det Rk,1) =1

Il
1]

(k 1’{0) ,  detR(k,2) =k + 1
j+ o0 8 -]
( 1 ), det R(2,j) —( 2

detn(k_l,j)=(j;f‘fiz) and detR(k,j—1)=(j+E'2),

o [j k-2 j+k-2Y _[j+k-1
detR(k,J)—(k_l)+( K )—( K )

for all k and all j by mathematical induction.

+

det R(1,j) =

|
—
i

If

then

Since P is its own transpose, Theorem 2.1 is also true if the words '"column'" and
"row' are everywhere exchanged.

Consider Pascal's triangle inthe configuration of AT, which is just Pascal's rectangu-
lar array P with the ith row moved (i - 1) spaces vight, i =1, 2, 3, ---. Form kxk
matrices R'(k,j) such that the first row of R'(k,j) is the second row of AT beginning with
the jth column of AT. Then AR'(k, j - 1) = R(k,j) as can be shown by considering their
column generating functions, and since detA = 1, det R'(k, j - 1) = det R(k,j), leadingus
to the following theorems.

Theorem 2.2. Let AT be the n X n matrix containing Pascal's triangle on and above
its main diagonal so that the rows of Pascal's triangle are placed vertically. Any k x k sub-
matrix of AT selected with its first row along the second row of AT and its first column

the jth column of AT, has determinant value

(e)

Since A is the transpose of AT, wording Theorem 2.2 in terms of the usual Pascal

triangle provides the following.
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Theorem 2.3. If Pascal's triangle is written in left-justified form, any kx k matrix
selected within the array with its first column the first column of Pascal's triangle and its

. .t
first row the i h row has determinant value given by the binomial coefficient

(1)

Returning to the rectangular Pascal matrix P, in Theorem 2.1, the first row of P
was omitted to form the k x k matrix considered. Now we omit any one row.

Theorem 2.4. Let Ri(k,j) be the k x k matrix formed from the rectangular Pascal
matrix P so that its first k rows are the first (k + 1) rows of P with the ith row omit-

ted, and its first column is the jth column of P. Then det Ri(k,j) is given by the binomial

j-1+k
k-1i+1/J)°

Proof. Notice that Ry(k,j) = R(k,j) of Theorem 2.1. If the first row is not the row

coefficient

omitted, by successively subtracting the pth column of Rs(k,j) from the (p + 1)St column,
p=k-1,k-2, ", 1, the new array is Rs_l(k -1, j+ 1) bordered by a first row with

first element one and all others zero, so that
det Rs(k,j) = det Rs-l(k -1,j+1

If the theorem holds when i = s -~ 1, then

; fG+1D-1+&-DY_f[i-1+kY) _ .
detRS_l(k— 1, j+1) _((k— - (s - 1) +1) —(k_ s +1) = detRs(k,J),

completing a proof by mathematical induction.

3. OTHER DETERMINANTS WITH SPECIAL VALUES

Suppose we form a matrix using the zeroth, second, fourth, - -, (Zr)th, <<+, rows of
Pascal's triangle written in rectangular form. Then the columns contain even subscripted
elements only. Since the ith column is still an ith order arithmetic progression, Eves'
Theorem should apply. The constant for the jth column will be Zj—l, rather than 1, and
the determinant of such a k x k matrix will be 20.21.22 ... 251 op 2Lk(k—1)/2]. To clar-

ify this, we present such a 5 x 5 matrix below, which has determinant 20.21.22.23.24 = 210,
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1 1 17

5 9 14

9 25 55
13 49 140
17 81 285

ju—t
-t

1

6 10 15
8 35 70| =
28 84 210

45 165 495

o e e
© 3 o W
=
o o o O =
NN NN

14
17
44
60

16 41
24 85
32 145

R
[ B e N = =
R N
24
o O O O =
o OO N
o e [ | -
Qo oo -3 © B

14
17
44
16

n
o o ©o o =
o o o N =
© o B oo =
© o 9 © =

In this section, we will prove the following:

Theorem 3.1. Form an n xn matrix in the upper left corner of Pascal's triangle in
rectangular form (or in left-justified form) using the rows which are multiples of r so that
the (i+ 1)St row in the matrix is the first n entries of the (ir)th row of the Pascal array,

i=0,1, 2, -, n-1. The determinant of the matrix is r[n(n-l)/z]‘

To prove this theorem, we require more information about rth order arithmetic
progressions.

Lemma 3.1. Let {cj}, j=0,1, 2, ---, be a sequence of consecutive elements of an

(AP)i with constants a Then the kth difference sequence has elements given by

k i
2&: pfk E : pf1i -
(-1) (p) cj_p, and (-1) < p) cj—p a, .
p=0 p=0

Proof. We list successive differences:

1st: c. - C.

® : i~ -1

2nd: c. - C, - (c -c, = ¢, - 2¢C +c
(J J—l) (J-l 3—2) i j-1 j=2

3rd: (cj - 2cj_1 + Cj-z) - (cj_1 - ch_z + cj_g)

if the (k - 1)St difference has the form of Lemma 3.1, then the kth difference is given by
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k-1 k-1
P k-1 _ pfk-1
Z;u)( : )cj_p 2;(1)( : )cj_p
p= p=
k-1 k-1
— pfk -1 pfk -1 k
"~ +Z(‘D ( P )Cj—p +Z -v ( P )Cj—p rEDTe
p=1 p=1

k

pf k
Z('D (p)cj-p ’
p=0

i, then the ith difference is the

1

which establishes the form given in the Lemma. When k
constant of the sequence.
Now form an n xn matrix P* with its (i + 1)St row the first n entries of the (ri)th

row of Pascal's triangle in rectangular form. Then the elements in its (k + 1)St column are

(r - i)k
K .
th

The k™ difference sequence for these elements is

k k

pf k _ pfk r-pk\_ Kk
E (-1) (p)cr—p = E (-1) (p)( K )— T
p=0 p=0

applying Lemma 3.1 and a formula given by Knuth [3]. The (k - 1)St difference is not a

given by

constant, however, so that the sequence is an (AP)k' By Eves' Theorem, the determinant,
then, will be rd.rtr? ... .r% 1 = rn(n—l)/z.

Ifan n Xn matrix A* is formed using only the (ri)th rows of Pascal's left-justified
triangle, and AT is the transpose of A defined in (1.2), then AT = P*, since the row

rd-1  andof AT,

() (=

T

generators of A* are (1 +x)

making the row generators of A*A

1 < r(i-1) 1 r(i-1)+1
(1_x)'(1+1-x) \T-x)

which we recognize as the row generators of P*, making det A* = det P* =

rn(n-l)/z.

(Here, we apply the method of proof using generating functions as in [1].)
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For example, when n = 4 and r = 2, A*AT becomes

1 0 0 0 1 1 1 1 1 1 17
i 2 0 0 1 2 3|_]|1 3 6 10
1 4 4 0 0 1 3 1 5 15 35
1 6 15 20 0 0 0 1] 1 7 28 84

In fact, we have the same results if the row numbers taken to form P* or A* form
an arithmetic progression.

Theorem 3.2. Form an n Xn matrix which has its (i + 1)St row the first n entries

. th . .
of the (ri + s) row of Pascal's triangle in rectangular form, s 20, i =0, 1, ---,n - 1.
The determinant of the matrix is rn(n—l)/ 2,
Proof. Subtract the (k- 1)St column from the kth column for Kk =n,n-1, -+, 2.

Repeating this process s times gives the matrix P*,

Reapplying Eves' Theorem, Theorem 3.1 can be extended to the following.

Theorem 3.3. Form an n Xn matrix such that its (i + l)st row consists of any n
successive entries whose subscripts differ by r from the ith row of Pascal's triangle
written in rectangular form, i =0,1, -+, n~-1. The determinant of the matrix is rn(n—l)/z'

The theorems of this section are special cases of the more general theorem which
follows.

Theorem 3.4. Form an nXn matrix which has its (i + 1)St row the subsequence
{Cir+s}’ ] arbitxr'la(fls_f,l)C}fzan (AP), {ci} with constant a,, i =0,1, -+, n- 1. Then: the

determinant is r 2p24ap ** Ay q.

The proof, which is omitted, hinges upon showing that {c.

1r+s} is an (AP)i with con-

stant I‘lai and applying Eves' Theorem.
The theorems of this section can also be stated for columns. Next, the results can be
extended to convolution arrays and to multinomial coefficient arrays by considering certain

matrix products.

4. MULTINOMIAL COEFFICIENT ARRAYS

n
Let the array of multinomial coefficients arising from expansions of (1 +x+... +xm) s

m 21, n2>0, be called the m-multinomial coefficient array. Let the left-justified m-

multinomial coefficient array be imbedded in an n Xn matrix Am. Let the nXn matrix
Fm contain the rows of Am as the columns of Fm written on and below the main diagonal.
Let AT be the transpose of the n Xn matrix A of (1.2). Then the matrix equation

was proved in [1]. Since any k x k submatrix of A%l having its first row along the second

row of A;l;l and its first column the jth column of AEI is the product of a submatrix of
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F with a unit determinant and a k x k submatrix of AT satisfying Theorem 2.2, its

m-1
k+j-2
i .

determinant will be given by
Since the transpose of A;l;l is Am , we restate these results in terms of the m-multinomial
coefficient array.

Theorem 4.1. The determinant of the k x k matrix formed with its first column the
first column of any multinomial coefficient array inleft-justified form (the column of succes-

sive whole numbers) and its first row the ith row of that multinomial coefficient array, has

()

Now let (A*)'_T be the transpose of the n x n matrix A* formed with its (i + 1)St Tow

value given by the binomial coefficient

the first n entries of the (ri)th row of Pascal's left-justified triangle, i = 0,1,+++,n - 1.
Then the matrix product Fm_l(A"‘)T = (AI";l)T, where A;“n is the n xn matrix formed us-
ing only the (ri)lCh rows of the m-multinomial coefficient array, i =0, 1, -+, n-1, as

can be proved by examining the column generating functions. For, the column generators of

Frnoq are Gj(X) =[x@Q+x+-.. +x™ 1)1 and of anT, Hj(x) =1 +x)r(3'1), i=1
2, +++, n, making the column generators of Fm_l(A"‘)T be Hj(Gj(X)) S(1+x+XE+ nn
+ Xm)r(J—l) , which we recognize as the column generators for the matrix (A;“n)T claimed

above. Again, considering the very special products of submatrices involved, we are led to
the following result.

Theorem 4.2. If any multinomial coefficient array is written inleft-justified form, the
determinant of the k x k matrix formed with its (i + 1)St row the first n entries of the
(I'i)th row of the multinomial array, i =0, 1, 2, +-+, k- 1, is given by rk(k'l)/z.

As an example, for n = 5 and r = 2, Fi(A*)T = (AQ“)T becomes

1 0 0 0 0 1 1 1 1 1 1 1 1 1

0 1 0 0 0 0 2 4 6 8 0 2 4 6 8

0 1 1 0 0 0 1 6 15 28| =10 3 10 21 36

0 0 2 1 0 0 0 4 20 56 0 2 16 50 112

0o 0 1 3 1)/ |0 o0 1 15 70j |0 1 19 90 266 |
where (A"z‘)T has alternate rows of the trinomial coefficient array appearing as its columns,

and the determinant equals 219,

Further examination of a matrix product, Fm- 1(AE)T, where the n x n matrix A:
is formed with its G+ 1)St row the first n entries of the (ri + s)tl[1 row of the m-multinomial
coefficient array, s 20, i =0, 1,2, -+, n- 1, shows that Theorem 3.2 canbe extended

to the multinomial coefficients.
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Theorem 4.3. Consider any left-justified multinomial coefficient array. Form a k x k
matrix with its (i + l)St row the first n entries of the (ri + s)th row of the multinomial

array, i =0, 1, -+, k-1, s 20. The determinant of that matrix is given by rk(kcl)/z.

5. THE FIBONACCI CONVOLUTION ARRAY AND RELATED ARRAYS

The Fibonacci sequence, when convolved with itself j - 1 times, forms the sequence

in the jth column of the matrix C below (see [1] and [4])

1 1 1 1
2 3 4 5 6
5 14 20 27

10 22 40 65 98 v s
20 51 105 190 315
38 111 256 511 924

Q
il
W U W N e

where the original sequence is in the leftmost column and the column generators are givenby
[1/(1-x- xz)]j , §=1,2, -+, n If Fy is the n xn matrix formed as in Section 3 with
the rows of Pascal's triangle in vertical position on and below the main diagonal, and P is
Pascal's rectangular array (1.1), then F;P = C as proved in [1]. Now, since here sub-
matrices of C taken along the second row of C are the product of submatrices of F; with
unit determinants and similarly placed submatrices of P whose determinants are given in
Theorem 2.1, these submatrices of C have determinant values given by the same binomial
coefficients found for P.

The generalization to convolution triangles for sequences which are found as sums of
rising diagonals of m-multinomial coefficient arrays written in left-justified form is not dif-
ficult, since the matrix product FmP yields just those arrays as shown in [1]. We thus
write the following theorem.

Theorem 5.1. Let the convolution triangle for the sequences of sums found along the
rising diagonals of theleft-justified m-multinomial coefficient arraybe written in rectangular
form and imbedded in an n Xxn matrix C*. Then the determinant of any k x k submatrix of
C* gselected with its first row along the second row of C* and its first column the jth col-

umn of C* has determinant value given by the binomial coefficient

()

Now, let P* be the n x n matrix with its @ + 1)St row the first n entries of the
(ri + s)th row of Pascal's rectangular array P, i =0, 1, -, n-1, s 2 0. Paralleling

the development given for Theorem 5.1 but considering the matrix product FmP* which is
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the n x n matrix containing the (ri + s)th rows of the convolution array for the rising diag-
onals of the given m-multinomial coefficient array, we find that Theorem 3.2 extends to the
following.

Theorem 5.2. If a .k x k matrix is formed with its (i + 1)St row the first n entries
of the (ri + s)t row of the rectangular convolution array for the rising diagonals of any
left-justified multinomial coefficient array, i =0, 1, ---, k-1, s 2 0, then its deter-
minant has value rk(k_l) / 2

Lastly, consider the sequence of sums of elements um(n; p, 1) foundon the rising di-
agonals formed by beginning at the leftmost column of a left-justified m-multinomial coef-
ficient array and going up p and to the right one throughout the array. (For the Pascal tri-
angle, these numbers are the generalized Fibonacci numbers u(n; p, 1) of Harris and Styles
[5].) Form the matrix Dm(p, 1) so that the sequence of elements having um(n; p, 1) as its
sum lies (in reverse order) on its rows. Dm(p,l) will have a one for each element on its
main diagonal and each column will contain the corresponding row of the m-multinomial ar-
ray but with (p - 1) zeros between entries, so that the generating functions for its columns
are [x(1 + <P + XZp e+ X(m—l)p)]j, j=1,2, -+, n. It was shownin [1] that Dm(p, )P
gives the convolution triangle in rectangular form for the sequence um(n; p, 1). By examin-
ing the column generators, we also have that Dm(p,l)P* gives the array containing the
(ir + s)th rows of the convolution triangle for the sequence um(n, p, 1). Putting all of this
together, we write the following theorem.

Theorem 5.3. Write the convolution triangle in rectangular form imbedded in an n X n
matrix C;n for the sequence of sums found on the rising diagonals formed by beginning at
the leftmost column and moving up p and right one throughout any left-justified multinomial
coefficient array. The k x k submatrix formed with its first row the second row of C;‘n and
its first column the jth column of C;x has determinant given by the binomial coefficient

( k+j - 1)
\ k
The n X n matrix formed with its (i + 1)St row the first n entries of the (ri+ s)th row of

. -1)/2
the convolution triangle, i =0, 1, -+, n-1, s 2 0, has determinant equal to rn(n v/ .
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