PERIODICITY OVER THE RING OF MATRICES

R. J. DECARLI Rosary Hill College, Buffalo, New York

Let R be the ring of $t \times t$ matrices with integral entries and identity I. Consider the sequence $\{M_m\}$ of elements of R, recursively defined by

(1)

$$M_{m+2} = A_1 M_{m+1} + A_0 M_m$$
 for $m \ge 0$,

where M_0 , M_1 , A_0 , and A_1 are arbitrary elements of R. In [1] we established identities for such a sequence over an arbitrary ring with unity. In this paper we establish an analogue of Robinson's [3] result concerning periodicity modulo k where k is an integer greater than 1. We need the following definitions.

<u>Definition 1.</u> Let $A = [a_{ij}]$ be an element of R. We reduce A modulo k by reducing each entry modulo k. If $B = [b_{ij}] \in R$, then $A \equiv B \pmod{k}$ if and only if $a_{ij} \equiv b_{ij} \pmod{k}$ for all i, j.

<u>Definition 2.</u> We say that the sequence defined by (1) is periodic modulo k if there exists an integer $L \ge 2$ such that $M_i \equiv M_{L+i} \pmod{k}$ for $i = 0, 1, 2, \cdots$. By the nature of the sequence we see that this is equivalent to the existence of an $L \ge 2$ such that $M_0 \equiv M_L \pmod{k}$ (mod k) and $M_1 \equiv M_{L+1} \pmod{k}$.

We assume for all matrices in the following Theorem that reduction modulo k has already taken place and we employ the usual notation for relative primeness. For $A \in R$ we let det A stand for the determinant of A.

Theorem 1. If $(\det A, k) = 1$, then the $\{M_m\}$ sequence defined by (1) is periodic modulo k.

Proof. Let

(2)

$$\mathbf{W_1} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{A_0} & \mathbf{A_1} \end{bmatrix}$$

where the entries are matrices from R. If we set

$$\mathbf{S}_{\mathbf{m}} = \begin{bmatrix} \mathbf{M}_{\mathbf{m}} \\ \mathbf{M}_{\mathbf{m}+1} \end{bmatrix}$$

for $n \ge 0$, then a simple induction argument yields

$$\mathbf{S}_{\mathbf{m}} = \mathbf{W}_{\mathbf{1}}^{\mathbf{m}} \mathbf{S}_{\mathbf{0}} \quad .$$

If we can find an L such that $W_1^L \equiv I \pmod{k}$, then $S_L = W_1^L S_0 \equiv I \cdot S_0 \equiv S_0 \pmod{k}$ and we will have

Dec. 1973

$$\begin{bmatrix} \mathbf{M}_{\mathrm{L}} \\ \mathbf{M}_{\mathrm{L}+1} \end{bmatrix} \equiv \begin{bmatrix} \mathbf{M}_{0} \\ \mathbf{M}_{1} \end{bmatrix} \pmod{\mathbf{k}} ,$$

which gives us periodicity. To show that such an L exists consider the sequence of matrices

(4) I,
$$W_1$$
, W_1^2 , ...

We first show that each matrix in (4) has an inverse modulo k. Laplace's method for evaluating determinants immediately gives det $W_1^r = (\det W_1)^r = ((-1)^t \det A_0)^r \neq 0 \pmod{k}$, since $(\det A_0, k) = 1$. Also, $(\det A_0, k) = 1$ implies $(((-1)^t \det A_0)^r, k) = 1$ and thus

(5)
$$(\det W_1^{\Gamma}, k) = 1.$$

For r = 0, $W_1^0 = I$ which is its own inverse. For r > 0 we let w_{ij} denote the entries of W_1^r and A_{ij} the cofactor of w_{ij} in det W_1^r . We observe that A_{ij} is always integral. Using matrix methods we have

(6)
$$(W_i^r)^{-1} = \left[\frac{A_{ij}}{\det W_i^r}\right]^T$$

where T stands for the transpose. An entry in the right-hand side of (6) is of the form

$$\frac{c}{\det W_1^r}$$
 ,

where c is an integer. The equation $(\det W_1^r)x \equiv c \pmod{k}$ has a unique solution since from (5) we have $(\det W_1^r, k) = 1$. Thus each entry in the right side of (6) is an integer and W_1^r has an inverse mod k for all $r \geq 0$. Because we only have k distinct integers mod k and $(2t)^2$ places to put them, we have at most $k^{(2t)^2}$ different matrices in (4). Since the sequence is infinite we must have

(7)
$$W_1^{L+r} \equiv W_1^r \pmod{k}$$
 for some L.

Multiplying both sides of (7) by $(W_1^r)^{-1}$ yields

(8)
$$W_1^L \equiv I \pmod{k}$$
.

Since $W_1 \neq I$ we see that $L \geq 2$. Thus we have $S_L \equiv W_1^L S_0 \equiv IS_0 \equiv S_0 \pmod{k}$ which implies $M_L \equiv M_0$ and $M_{L+1} \equiv M_1$ and establishes periodicity.

The central role played by A_0 is more clearly illustrated if we consider a higher order recurrence defined for a fixed $d \ge 2$ by:

$$M_{m+d} = A_{d-1}M_{m+d-1} + A_{d-2}M_{m+d-2} + \cdots + A_0M_m, \quad m \ge 0,$$

where the A_i and the M_i , $0 \le i \le d-1$, are arbitrary elements from R. Even though there are 2d arbitrary elements that determine this sequence, the question of periodicity still depends on the nature of A_0 . If det $(A_0, k) = 1$, then we again have periodicity. This is proved using

$$\mathbf{V} = \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{I} \\ \mathbf{A}_0 & \mathbf{A}_1 & \mathbf{A}_2 & \cdots & \mathbf{A}_{d-1} \end{bmatrix}$$

in place of W_1 and

$$\mathbf{S}_{\mathbf{m}} = \begin{bmatrix} \mathbf{M}_{\mathbf{m}} \\ \mathbf{M}_{\mathbf{m}+1} \\ \vdots \\ \vdots \\ \mathbf{M}_{\mathbf{m}+d-1} \end{bmatrix}$$

It is easy to show that $S_m = V^m S_0$ and that det V depends on det A_0 . The rest of the proof follows as in the proof of Theorem 1. A close look at the position of A_0 in V clearly indicates why it is so important in determining periodicity.

REFERENCES

- 1. R. J. DeCarli, "A Generalized Fibonacci Sequence Over an Arbitrary Ring," <u>Fibonacci</u> <u>Quarterly</u>, Vol. 8, No. 2 (1970), pp. 182-184.
- 2. I. Niven and H. S. Zuckerman, <u>An Introduction to the Theory of Numbers</u>, Wiley, New York, 1960.
- D. W. Robinson, "The Fibonacci Matrix Modulo m," <u>Fibonacci Quarterly</u>, Vol. 1, No. 2 (1963), pp. 29-36.

468