PERIODICITY OVER THE RING OF MATRICES

R. J. DECARLI

Rosary Hill College, Buffalo, New York

Let R be the ring of $t \times t$ matrices with integral entries and identity I. Consider the sequence $\left\{M_{m}\right\}$ of elements of R, recursively defined by

$$
\begin{equation*}
M_{m+2}=A_{1} M_{m+1}+A_{0} M_{m} \quad \text { for } \quad m \geq 0 \tag{1}
\end{equation*}
$$

where M_{0}, M_{1}, A_{0}, and A_{1} are arbitrary elements of R. In [1] we established identities for such a sequence over an arbitrary ring with unity. In this paper we establish an analogue of Robinson's [3] result concerning periodicity modulo k where k is an integer greater than 1 We need the following definitions.

Definition 1. Let $A=\left[a_{i j}\right]$ be an element of R. We reduce A modulo k by reducing each entry modulo k. If $B=\left[b_{i j}\right] \in R$, then $A \equiv B(\bmod k)$ if and only if $a_{i j} \equiv b_{i j}$ $(\bmod k)$ for all i, j.

Definition 2. We say that the sequence defined by (1) is periodic modulo k if there exists an integer $L \geq 2$ such that $M_{i} \equiv M_{L+i}(\bmod k)$ for $i=0,1,2, \cdots$. By the nature of the sequence we see that this is equivalent to the existence of an $L \geq 2$ such that $M_{0} \equiv M_{L}$ $(\bmod k)$ and $\mathrm{M}_{1} \equiv \mathrm{M}_{\mathrm{L}+1}(\bmod \mathrm{k})$.

We assume for all matrices in the following Theorem that reduction modulo k has already taken place and we employ the usual notation for relative primeness. For $A \in R$ we let $\operatorname{det} \mathrm{A}$ stand for the determinant of A .

Theorem 1. If ($\operatorname{det} A, k)=1$, then the $\left\{M_{m}\right\}$ sequence defined by (1) is periodic modulo k.

Proof. Let

$$
\mathrm{W}_{1}=\left[\begin{array}{cc}
0 & \mathrm{I} \tag{2}\\
\mathrm{~A}_{0} & \mathrm{~A}_{1}
\end{array}\right]
$$

where the entries are matrices from R. If we set

$$
S_{m}=\left[\begin{array}{c}
M_{m} \\
M_{m+1}
\end{array}\right]
$$

for $\mathrm{n} \geq 0$, then a simple induction argument yields

$$
\begin{equation*}
\mathrm{s}_{\mathrm{m}}=\mathrm{W}_{1}^{\mathrm{m}} \mathrm{~s}_{0} \tag{3}
\end{equation*}
$$

If we can find an L such that $W_{1}^{\mathrm{L}} \equiv \mathrm{I}(\bmod k)$, then $\mathrm{S}_{\mathrm{L}}=\mathrm{W}_{1}^{\mathrm{L}} \mathrm{S}_{0} \equiv \mathrm{I} \cdot \mathrm{S}_{0} \equiv \mathrm{~S}_{0}(\bmod \mathrm{k})$ and we will have

$$
\left[\begin{array}{c}
\mathrm{M}_{\mathrm{L}} \\
\mathrm{M}_{\mathrm{L}+1}
\end{array}\right] \equiv\left[\begin{array}{c}
\mathrm{M}_{0} \\
\mathrm{M}_{1}
\end{array}\right] \quad(\bmod \mathrm{k})
$$

which gives us periodicity. To show that such an L exists consider the sequence of matrices

$$
\begin{equation*}
\mathrm{I}, \quad \mathrm{~W}_{1}, \quad \mathrm{~W}_{1}^{2}, \quad \cdots . \tag{4}
\end{equation*}
$$

We first show that each matrix in (4) has an inverse modulo k. Laplace's method for evaluating determinants immediately gives $\operatorname{det} W_{1}^{r}=\left(\operatorname{det} W_{1}\right)^{r}=\left((-1)^{t} \operatorname{det} A_{0}\right)^{r} \not \equiv 0(\bmod k)$, since $\left(\operatorname{det} A_{0}, k\right)=1$. Also, $\left(\operatorname{det} A_{0}, k\right)=1 \operatorname{implies}\left(\left((-1)^{t} \operatorname{det} A_{0}\right)^{r}, k\right)=1$ and thus

$$
\begin{equation*}
\left(\operatorname{det} W_{1}^{r}, k\right)=1 \tag{5}
\end{equation*}
$$

For $r=0, W_{1}^{0}=I$ which is its own inverse. For $r>0$ we let $w_{i j}$ denote the entries of W_{1}^{r} and $A_{i j}$ the cofactor of $W_{i j}$ in det W_{1}^{r}. We observe that $A_{i j}$ is always integral. Using matrix methods we have

$$
\begin{equation*}
\left(W_{1}^{r}\right)^{-1}=\left[\frac{A_{i j}}{\operatorname{det} W_{1}^{r}}\right]^{T} \tag{6}
\end{equation*}
$$

where T stands for the transpose. An entry in the right-hand side of (6) is of the form

$$
\frac{\mathrm{c}}{\operatorname{det} \mathrm{~W}_{1}^{\mathrm{r}}},
$$

where c is an integer. The equation $\left(\operatorname{det} W_{1}^{r}\right) x \equiv c(\bmod k)$ has a unique solution since from (5) we have ($\operatorname{det} \mathrm{W}_{1}^{\mathrm{r}}, \mathrm{k}$) =1. Thus each entry in the right side of (6) is an integer and W_{1}^{r} has an inverse mod k for all $r \geq 0$. Because we only have k distinct integers mod k and $(2 t)^{2}$ places to put them, we have at most $k^{(2 t)^{2}}$ different matrices in (4). Since the sequence is infinite we must have

$$
\begin{equation*}
\mathrm{W}_{1}^{\mathrm{L}+\mathrm{r}} \equiv \mathrm{~W}_{1}^{\mathrm{r}}(\bmod \mathrm{k}) \quad \text { for some } \mathrm{L} . \tag{7}
\end{equation*}
$$

Multiplying both sides of (7) by $\left(\mathrm{W}_{1}^{\mathrm{r}}\right)^{-1}$ yields

$$
\begin{equation*}
\mathrm{W}_{1}^{\mathrm{L}} \equiv \mathrm{I} \quad(\bmod \mathrm{k}) \tag{8}
\end{equation*}
$$

Since $W_{1} \not \equiv \mathrm{I}$ we see that $\mathrm{L} \geq 2$. Thus we have $\mathrm{S}_{\mathrm{L}}=\mathrm{W}_{1}^{\mathrm{L}} \mathrm{S}_{0} \equiv \mathrm{IS}_{0} \equiv \mathrm{~S}_{0}(\operatorname{modk})$ which implies $\mathrm{M}_{\mathrm{L}} \equiv \mathrm{M}_{0}$ and $\mathrm{M}_{\mathrm{L}+1} \equiv \mathrm{M}_{1}$ and establishes periodicity.

The central role played by A_{0} is more clearly illustrated if we consider a higher order recurrence defined for a fixed $d \geq 2$ by:

$$
M_{m+d}=A_{d-1} M_{m+d-1}+A_{d-2} M_{m+d-2}+\cdots+A_{0} M_{m}, \quad m \geq 0
$$

where the A_{i} and the $M_{i}, 0 \leq i \leq d-1$, are arbitrary elements from R. Even though there are 2 d arbitrary elements that determine this sequence, the question of periodicity still depends on the nature of A_{0}. If $\operatorname{det}\left(A_{0}, k\right)=1$, then we again have periodicity. This is proved using

$$
\mathrm{V}=\left[\begin{array}{ccccc}
0 & \mathrm{I} & 0 & \cdots & 0 \\
0 & 0 & \mathrm{I} & \cdots & 0 \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
0 & 0 & 0 & \cdots & \mathrm{I} \\
\mathrm{~A}_{0} & \mathrm{~A}_{1} & \mathrm{~A}_{2} & \cdots & \mathrm{~A}_{\mathrm{d}-1}
\end{array}\right]
$$

in place of W_{1} and

$$
S_{m}=\left[\begin{array}{c}
M_{m} \\
M_{m+1} \\
\cdot \\
\cdot \\
\cdot \\
M_{m+d-1}
\end{array}\right]
$$

It is easy to show that $S_{m}=V^{m} S_{0}$ and that $\operatorname{det} V \operatorname{depends}$ on $\operatorname{det} A_{0}$. The rest of the proof follows as in the proof of Theorem 1. A close look at the position of A_{0} in V clearly indicates why it is so important in determining periodicity.

REFERENCES

1. R. J. DeCarli, "A Generalized Fibonacci Sequence Over an Arbitrary Ring," Fibonacci Quarterly, Vol. 8, No. 2 (1970), pp. 182-184.
2. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New York, 1960.
3. D. W. Robinson, "The Fibonacci Matrix Modulo m," Fibonacci Quarterly, Vol. 1, No. 2 (1963), pp. 29-36.
