ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by

A. P. HILLMAN

University of New Mexico, Albuquerque, New Mexico

Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman, Dept. of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131. Each problem or solution should be submitted in legible form, preferably typed in double spacing, on a separate sheet or sheets, in the format used below. Solutions should be received within four months of the publication date.

Definitions. The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy $\mathrm{F}_{\mathrm{n}+2}=$ $F_{n+1}+F_{n}, \quad F_{0}=0, \quad F_{1}=1$, and $L_{n+2}=L_{n+1}+L_{n}, \quad L_{0}=2, \quad L_{1}=1$.

PROBLEMS PROPOSED IN THIS ISSUE

B-268 Proposed by Warren Cheves, Littleton, North Carolina.

Define a sequence of complex numbers $\left\{C_{n}\right\}$, $n=1,2, \cdots$, where $C_{n}=F_{n}+i F_{n+1}$. Let the conjugate of C_{n} be $\bar{C}_{n}=F_{n}-i F_{n+1}$. Prove
(a) $\mathrm{C}_{\mathrm{n}} \overline{\mathrm{C}}_{\mathrm{n}}=\mathrm{F}_{2 \mathrm{n}+1}$
(b) $\mathrm{C}_{\mathrm{n}} \overline{\mathrm{C}}_{\mathrm{n}+1}=\mathrm{F}_{2 \mathrm{n}+2}+(-1)^{\mathrm{n}}$.

B-269 Proposed by Warren Cheves, Littleton, North Carolina.

Let Q be the matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

The eigenvalues of Q are α and β, where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. Since the eigenvalues of Q are distinct, we know that Q is similar to a diagonal matrix A. Show that A is either

$$
\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
\beta & 0 \\
0 & \alpha
\end{array}\right)
$$

B-270 Proposed by Herta T. Freitag, Roanoke, Virginia.
Establish or refute the following: If k is odd,

$$
L_{k} \mid\left[F_{(n+2) k}-F_{n k}\right]
$$

B-271 Proposed by Herta T. Freitag, Roanoke, Virginia.
Establish or refutue the following: If k is even, $\mathrm{L}_{\mathrm{k}}-2$ is an exact divisor of

$$
\mathrm{F}_{(\mathrm{n}+2) \mathrm{k}}+2 \mathrm{~F}_{\mathrm{k}}-\mathrm{F}_{\mathrm{nk}}
$$

(b)
(c)

$$
\begin{aligned}
& F_{(n+2) k}-2 F_{(n+1) k}+F_{n k} ; \quad \text { and } \\
& 2\left[F_{(n+2) k}-F_{(n+1) k}+F_{k}\right]
\end{aligned}
$$

B-272 Proposed by Gary G. Ford, Vancouver, British Columbia, Canada.
Find at least some of the sequences $\left\{y_{n}\right\}$ satisfying

$$
\mathrm{y}_{\mathrm{n}+3}+\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}+2} \mathrm{y}_{\mathrm{n}+1} .
$$

B-273 Proposed by Marjorie Bicknell, A. C. Wilcox High School, Santa Clara, California.
Construct any triangle $\triangle \mathrm{ABC}$ with vertex angle $\mathrm{A}=54^{\circ}$ and median $\overline{\mathrm{AM}}$ to the side opposite A such that $A M=1$. Now, inscribe $\triangle X Y M$ in $\triangle A B C$ so that M is the midpoint of $\overline{\mathrm{BC}}$, and X and Y lie between A and B and between A and C , respectively. Find the minimum perimeter possible for the inscribed triangle, $\triangle X Y M$.

SOLUTIONS

POLYNOMIALS IN THE Q MATRIX
B-244 Proposed by J. L. Hunsucker, University of Georgia, Athens, Georgia.
Let Q be the 2×2 matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

and let

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be the sum of a finite number of matrices chosen from the sequence Q, Q^{2}, Q^{3}, \ldots. Prove that $\mathrm{b}=\mathrm{c}$ and $\mathrm{a}=\mathrm{b}+\mathrm{d}$.

Solution by Graham Lord, Temple University, Philadelphia, Pennsy/vania.
It will be sufficient to show for $n=1,2,3, \cdots$ that if

$$
Q^{n}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then $b=c$ and $a=b+d$. For if each Q^{n} has this property then the sum of a finite number of terms from the sequence Q, Q^{2}, Q^{3}, \cdots will retain the same property.

However, if

$$
\mathrm{Q}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

then it is easily shown by induction that

$$
Q^{n}=\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

for $n \geq 1$, and clearly this latter matrix has the required property.
Also solved by Richard Blazej, Wray G. Brady, Paul S. Bruckman, Warren Cheves, C. B. A. Peck, Richard W. Sielaff, Tony Waters, Gregory Wulczyn, David Zeitlin, and the Proposer.

SUMS AND DIFFERENCES OF FIBONACCI SQUARES

Show that each term F_{n} with $\mathrm{n}>0$ in the sequence $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \cdots$ is expressible as $x^{2}+y^{2}$ or $x^{2}-y^{2}$ with x and y terms of the sequence with distinct subscripts.

Solution by David Zeitlin, Minneapolis, Minnesota.
The result follows by noting that $\mathrm{F}_{2 \mathrm{n}}=\mathrm{F}_{\mathrm{n}+1}^{2}-\mathrm{F}_{\mathrm{n}-1}^{2}$ and $\mathrm{F}_{2 \mathrm{n}-1}=\mathrm{F}_{\mathrm{n}}^{2}+\mathrm{F}_{\mathrm{n}-1}^{2}$.

Also solved by Richard Blazej, W. G. Brady, Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Graham Lord, C. B. A.Peck, Gregory Wulczyn, and the Proposer.

AT MOST ONE IS RATIONAL

B-246 Proposed by L. Carlitz, Duke University, Durham, North Carolina.
Show that at least one of the following sums is irrational.

$$
\sum_{n=0}^{\infty} \frac{1}{F_{2 n+1}}, \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{L_{2 n+1}}
$$

Solution by C. B. A. Peck, State College, Pennsy/vania.
Since (FQ, Vol. 5, pp. 469-4.71) sum I is $\sqrt{5}$ times sum II, sum I is irrational if sum II is rational, completing the proof.

Also solved by Paul S. Bruckman and the Proposer.

LUCAS MULTIPLES OF FIBONACCI NUMBERS

B-247 Proposed by Larry Lang, Student, San Jose State University, San Jose, California.

Given that m and n are integers with $0<\mathrm{n}<\mathrm{m}$ and $\mathrm{F}_{\mathrm{n}} \mid \mathrm{L}_{\mathrm{m}}$, prove that n is 1 , 2,3 , or 4 .

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico.

Let $m=q n+r$ with m, n, and q positive integers and $0 \leq r<n$. Since
$\operatorname{gcd}\left(F_{n}, F_{n+1}\right)=1$ and $L_{m}=L_{m-n} F_{n+1}+L_{n-n-1} F_{n}$,
$F_{n} \mid L_{m}$ implies $F_{n} \mid L_{m-n}$. Continuing this way, one shows that $F_{n} \mid L_{m}$ implies $F_{n} \mid L_{m-q n}$, i. e. , $F_{n} \mid L_{r}$. Then $F_{n}<L_{r}, r<n$, and $n>4$ imply $r=n-1$ since it is easily shown by induction that $\mathrm{F}_{\mathrm{n}}>\mathrm{L}_{\mathrm{r}}$ for $\mathrm{n}>4$ and $\mathrm{r}<\mathrm{n}-1$. Since $\mathrm{L}_{\mathrm{n}-1}=\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-2}, \quad \mathrm{~F}_{\mathrm{n}} \mid \mathrm{L}_{\mathrm{n}-1}$ implies $F_{n} \mid F_{n-2}$. This is impossible for $n>2$, completing the proof.

SOME CASES OF $n \mid \mathrm{F}_{\mathrm{n}}$
B-248 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.
Let k be a positive integer and let $h=5^{k}$. Prove that $h \mid F_{h}$.

Solution by Graham Lord, Temple University, Philadelphia, Pennsy/vania.
Proof by induction;
Let $h \mid F_{h}$ for $k=n$, and note that for $n=1, h=5 \mid F_{5}=5$. The factorization $x^{5}-$ $y^{5}=(x-y)\left(x^{4}+x^{3} y+x^{2} y^{2}+x^{3}+y^{4}\right)$ with $x=\alpha^{h}$ and $y=\beta^{h}$ yields

$$
F_{5 h}=F_{h}\left(L_{4 h}-L_{2 h}+1\right) .
$$

But $\mathrm{L}_{4 \mathrm{~h}}-\mathrm{L}_{2 \mathrm{~h}}+1=\left(5 \mathrm{~F}_{2 \mathrm{~h}}^{2}+2\right)-\left(5 \mathrm{~F}_{\mathrm{h}}^{2}-2\right)+1 \equiv 0(\bmod 5) . \quad\left(\mathrm{I}_{16}, \mathrm{I}_{17}\right.$, p. 59 of Hoggatt' s book). Hence $F_{5 h}$ is divisible by $5 h$ if F_{h} is divisible by h, which completes the induction.

Also solved by W. G. Brady, Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Gregory Wulczyn, and the Proposer.

EXAMPLES OF $n \mid L_{n}$

B-249 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.

Let k be a positive integer and let $\mathrm{g}=2 \cdot 3^{\mathrm{k}}$. Prove that $\mathrm{g} \mid \mathrm{L}_{\mathrm{g}}$.

Solution by Graham Lord, Temple University, Philadelphia, Pennsy/vania.
It will be shown that if k is a positive integer and $\mathrm{g}=2 \cdot 3^{\mathrm{k}}$ then $(3 \mathrm{~g}) \mid \mathrm{L}_{\mathrm{g}}$ but $(9 \mathrm{~g}) \nmid \mathrm{L}_{\mathrm{g}}$, which implies the property asked in $\mathrm{B}-249$.

Proof by induction.
Let the induction hypothesis be for $\mathrm{k}=\mathrm{n},(3 \mathrm{~g}) \mid \mathrm{L}_{\mathrm{g}}$ but $(9 \mathrm{~g}) \nmid \mathrm{L}_{\mathrm{g}}$. For $\mathrm{n}=1$ the hypothesis is true since $3 \mathrm{~g}=18=\mathrm{L}_{6}$. From the induction hypothesis $\mathrm{L}_{\mathrm{g}}=3 \mathrm{gt}$, where 3 and t are coprime. Then

$$
\begin{array}{rlr}
L_{3 g} & =L_{g}\left(L_{2 g}-1\right) & {\left[\text { from } x^{3}+y^{3}=(x+y)\left(x^{2}+x y+y^{2}\right)\right]} \\
& =3 \operatorname{gt}\left(L_{g}^{2}-3\right) & \left(I_{15}, \text { p. } 59, \text { of Hoggatt's book }\right) \\
& =9 g t\left(3 g^{2} t^{2}-1\right)
\end{array}
$$

which shows that $[3(3 \mathrm{~g})] \mid \mathrm{L}_{3 \mathrm{~g}}$ but $[9(3 \mathrm{~g})]\left\langle\mathrm{L}_{3 \mathrm{~g}}\right.$.
Also solved by Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Gregory Wulczyn, David Zeitlin, and the Proposer.

