(d)
$$(n:m) = (-x:n + m + x) + (-1)^{m+1}(-x - m:n + x)$$
.

Equations (c) and (d) may be combined into the one formula:

(1)
$$(n:m) = (\pm x:n + m \mp x) + (-1)^{m+1} (\pm x - m:n \mp x) .$$

By the same method, the following formulae may be proved:

(2)
$$(n:m) = (\pm x + m:n \mp x) + (-1)^{m+1} (\pm x:n - m \mp x)$$

(3)
$$(n \pm x:m) = (\pm x:n + m) + (-1)^{m+1}(\pm x - m:n)$$

(4)
$$(n \pm x:m) = (\pm x + m:n) + (-1)^{m+1} (\pm x:n - m)$$

(5)
$$(n[x \pm 1]:m) = (\pm n:nx + m) + (-1)^{m+1}(\pm n - m:nx)$$

(6)
$$(n[x \pm 1]:m) = (\pm n + m:nx) + (-1)^{m+1}(\pm n:nx - m)$$

(7)
$$(n:m) = (-1)^{X+1} [(x:n + m + x) - (m + x:n + x)]$$

Clearly, Equations (a) and (b) are special cases of Equations (2) and (7), respectively.

REFERENCE

1. Brother Alfred Brousseau, An Introduction to Fibonacci Discovery, P. 46, page 11, and P. 48, page 12.

ERRATA

Please make the following corrections on "A Generalized Fibonacci Numeration," by E. Zeckendorf, appearing on pp. 365-372 of the October, 1972 Fibonacci Quarterly:

p. 366, line 15: Please change the third word from: sequencex to sequences.

p. 368, line 13: Read: $t_{6,3,-1,-4,-6} = F_5 + F_2 + F_{-2} + F_{-5} + F_{-7}$.

line 8 from bottom: Underscore: symmetric pairs.

line 6 from bottom: Read: metric pairs may join up into one symmetric group (e.g., $t_{6,0,-6}$, $t_{8,4,-4,-8}$).

line 4 from bottom: Underscore: saturated symmetric groups.