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In the Fibonacci Quarterly, Vol. 1, No. 2, page 84, Stephen P. Geller reported on a 
computation (using an IBM 1620) in which he established the period of the Fibonacci numbers 
modulo 10 for n = 1, 2, 3, 4, 5, 6. For example, the last digit of the decimal numeral 
for F. is periodic with period 60, and the last six digits a re periodic with period 1,500,000. 
Mr. Geller closed his report by saying, "There does not yet seem to be any way of guessing 
the next period," and expresses a hope that a clever computer program could be designed for 
skipping part of the sequence. And Mr. Geller and R. B. Wallace proposed the finding of an 
expression for these periods as Problem B15. 

In the Quarterly, Vol. 1, No. 4, page 21, Dov Jarden, with all of the scorn of the theo-
retician for the empiricist , brings out the big guns and bat ters the problem to pieces, show-
ing that F, is periodic modulo 10 with period 15-10 if n > 3, for n = 1, 2 the 
periods are 60 and 300. 

And in the Quarterly, Vol. 2, No. 3, page 211, Richard L. Heimer reported on a ca l -
culation examining the same problem in numerals of radix 2, 3, 4, 5, • • • , 16. (Inhis a r t i -
cle he does not mention a machine and probably did the calculation by hand.) He wri tes that 
his interest was aroused by the eccentricity of the first two periods for decimal numerals. 

At the same time as I recently read these ar t ic les , I stumbled on the big guns neces -
sary to almost completely reduce the problem, "What is the period of the last j digits of the 
numeral of radix n of F, , the k term in the Fibonacci Sequence?," to a routine compu-
tation. (I say almost completely because, for example, n = 241 would require extended 
calculations withlarge numbers or the use of tables thatl don't have available.) The problem 
is equivalent to: 

What is the period of the Fibonacci sequence modulo i r ? 

Definition 1. The period of the Fibonacci sequence modulo m, which we write P(m), 
is the smallest natural number k such that F . = F (mod m) for every natural number 
n. 

We s tar t the subscripts of the Fibonacci sequence in the usual place; that i s , Fj = 1,, 
F2 = 1, and F = F n + F 0 for n > 2. L n n -1 n-2 

All of the theorems necessary to solve this problem have been proven already. We 
will quote them here as we develop the need for them and close the paper by commenting on 
where proofs can be found. 

Theorem 1. F, is periodic modulo m for every natural number m > 1. 
Hence, there is a solution. 
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To solve the problem for all natural numbers n, it will suffice to solve it for prime 
numbers , for 

Theorem 2. If m = p]1 • pi2 • • • • • p.1 where the pfs are distinct p r imes , then 

P(m) = LCM(P(pJ
1

1), • •• , Pfc]1)) 

and we can find the period modulo m if we know the periods of the powers of the prime fact-
tors of m. We need one more technical te rm to talk easily about the problem: 

Definition 2. If p is a prime number, the rank of apparition of p, R(p), is the s u b -
script of the first Fibonacci number divisible by p. That i s , R(l) is the least natural num-
ber k such that p/F, . 

There is a reasonably nice relationship between R(p) and P(p): 
Theorem 3. If p > 2 is pr ime, 

_ , v ( l if R(p) = 2 (mod 4) 
£}Ei = 2 if R(p) = 0 (mod 4) 
m p ; [ 4 if R(p) = ±1 (mod 4) 

Thus, if we can find the rank of p, we have the period. For many pr imes , we can find 
this ratio without knowing the rank of p. 

Theorem 4. 
' = 1 if p = 11 or 19 (mod 20) 

P(p) J = 2 if p = 3 or 7 (mod 20) 
RlpT j = 4 if p E 13 or 17 (mod 20) ' 

/ 2 if p E 21 or 29 (mod 40) 

There is a limit to the amount of work involved in finding R(p). 
Theorem 5. 

R(p)|(p - 1) if p = ±1 (mod 10) 

R(p)|(p + 1) if p = ±3 (mod 10) 

so that checking somewhat fewer than p/2 Fibonacci numbers is guaranteed to find the first 
Fibonacci number divisible by p. 

Theorem 6. If P(p2) f P(p) then P(p^) = p: i"1P(p). 
Thus, subject to a rather odd condition, if we know P(p) we know P(pJ) . So far as I 

know, neither has P(p2) f P(p) been proved nor has a counter-example been found. J u s t i n 
case , there a re theorems to take care of odd situations that might a r i se : 

Theorem 7. 

P(p k ) = P(p) 

for prime p > 2. 
Rtp^j " ^ 

Theorem 8. If t is the largest integer such that P(p ) = P(p) then 

P(pk) = p k - t P ( p ) for k > t . 
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Table 

t(m) denotes P(m)/R(m); in the last three columns, n > 2 
m 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

t(m) 

1 

2 

4 

2 

1 

4 

4 

1 

2 

R(m) 

3 

4 

6 

5 

12 

8 

6 

12 

15 

10 

12 

7 

24 

20 

12 

9 

12 

18 

30 

8 

30 

24 

12 

25 

21 

36 

24 

14 

P(m) 

3 

8 

6 

20 

24 

16 

12 

24 

60 

10 

24 

28 

48 

40 

24 

36 

24 

18 

60 

16 

30 

48 

24 

100 

84 

72 

48 

14 

t (m 2 ) 

1 

2 

4 

2 

1 

4 

4 

1 

2 

1 

R ( m 2 ) 

6 

12 

12 

25 

12 

56 

48 

108 

I5Q 

110 

12 

91 

168 

300 

192 

153 

108 

342 

300 

168 

330 

552 

48 

625 

546 

972 

84 

406 

P ( m 2 ) 

6 

24 

24 

100 

24 

112 

96 

216 

300 

110 

24 

364 

336 

600 

384 

612 

216 

342 

600 

336 

330 

1104 

96 

2500 

1092 

1944 

168 

406 

t (m ) 

2 

2 

4 

2 

1 

4 

4 

1 

2 

1 

E ( m n ) 

3 - 2 n " 2 

4 - 3 1 1 - 1 

3 . 2 2 n - 2 

5 n 

3 . 6 n - 2 

8 .7 1 1 - 1 

3 . 2 3 n - 2 

4 - 3 2 1 1 - 1 

7 5 . 1 0 n - 2 

l o - n 1 1 - 1 

1 2 n - l 

7 - 1 3 n - 1 

2 1 - 1 4 n - 2 

2 0 - 1 5 1 1 - 1 

3 . 2 4 n - 2 

9 .17 1 1 - 1 

27-18 1 1 " 2 

18-19 1 1 " 1 

1 5 - 2 0 n _ 1 

8 . 2 1 1 1 - 1 

165-22 1 1 ' 2 

2 4 - 2 3 1 1 - 1 

2 -24 1 1 - 1 

5 2 n 

273-2611""2 

4 - 3 3 1 1 - 1 

3 . 28 1 1 - 1 

14-29 1 1 - 1 

P ( m n ) 

3-2 1 1 - 1 

8 . 3 1 1 - 1 

3 - 2 2 1 1 - 1 

4 - 5 n 

o * 

l e - y 1 1 - 1 

Z-2^'1 

8 - 3 2 1 1 - 1 

15-lO11"1 

io-n11-1 

2 1 2 n - 1 

28-IS1 1"1 

s-u11-1 

4 0 - I S 1 1 " 1 

3 . 2 4 n - l 

36- lln-X 

3-18 1 1 - 1 

18-19 1 1 - 1 

so^o11"1 

1 6 - 2 i n _ 1 

15-22 1 1 - 1 

48 -23 1 1 - 1 

4 -24 1 1 - 1 

4 - 5 2 n 

21-26 1 1 - 1 

8 - 3 3 1 1 - 1 

6-281 1-1 

14-29 1 1 - 1 

*holdsfor n > 3; for n > 2, R(6n) = s"'1 LCM(2n"2,4) and P(6n) = 2R(6n) 

**holds for n > 4; for n > 2, E(14n) = 3-711"1 LCM(8,2 n " 2 ) 5 and P(14n) = 2E(14n) 

fholds for n > 3; for n > 2, R(18n) = 3211""1 LCM(4,2 n " 2 ) , and P(18n) = 2R(18n) 

JR holds for n > 2; P holds only for n > 3, for n > 2 

P(26n) = 21 • IS1 1"1 LCM(4, 211"1) 
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The original problem can, in principle, be solved for any natural number m by, first , 
using the fundamental theorem of arithmetic to write m as a product of powers of distinct 
p r imes , 

ni = Pi1 • P22 p?1 ; 

second, finding R(p, ), 1 < k £ i, using Theorem 5 to save labor; third, checking whether 
R(p?) = R(PjJ and using Theorem 3 or 4, Theorem 7 and Theorem 6 or 8 to find 

jk P(Pk
k) ; 

and, finally, using Theorem 2 to find P(m). The same algorithm works for m = n, n2, n3, 

After learning these strange things, I constructed a table, starting with m - 2 because 
2 was the natural place to s tar t and going to 28 because my paper had 27 lines and then add-
ing 29 because it seemed a shame to stop when the next entry would be pr ime. 

We can now shed light on the question that aroused Mr. Heimer — why are the first few 
periods for decimal numerals i r regula r? The answer appears when we construct 

L C M ( P ( 2 k ) , P (5 k ) ) = LCM ( 3 - 2 k - \ 4.5k~1) 

in which the exponent of 2 does not s tar t to grow until the 22 in P(5 ) is used up. The 
same thing happens when m = 18, for example. See the notes for the table. 

I suspect that there is not much more to say about the periodicity of the terminal digits 
of F, . The mat ter of the periodicity of F, modulo p is an interesting one for labor-saving 
purposes when one is seeking the prime factorizations of large Fibonacci numbers. In order 
that this article contain all of the elementary machinery for working on this problem, I quote 
one more theorem. 

Theorem 9. If a is a divisor of F, then a is a divisor of F . for every natural 
number n. 

In part icular F , / F . and p /F , where k is a multiple of R(p). 
Theorems 1 and 2 are theorems 1 and 2, respectively, in Wall. Theorems 3, 4, and 5 

are Theorem 2, Theorem 4, and Lemma 3, respectively, in Vinson; Theorems 6 and 8 are 
Theorem 5 in Wall; Theorem 7 is a Corollary of Vinson1 s Theorem 2, and Theorem 9 is a 
Corollary of Theorem 3 in Wall. 
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