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The Fibonacci polynomials and their relationship to diagonals of Pasca l ' s triangle are 
generalized in this paper. The generalized Q-matrix investigated by Ivie [1] occurs as a 
special case. 

1. THE FIBONACCI POLYNOMIALS 

The Fibonacci polynomials, defined by 

(1.1) F0(x) = 0, Ft(x) = 1, F2(x) = x, F
n + 2 ( x ) = x F

n + i ^ + F
n ( x ) ' 

a re well known to readers of this journal. That the Fibonacci polynomials a re generated by 
a matr ix Q2, 

(1.2) Q 2 = | t nl- Q ? = ' V l ( X ) Fn(X> 

( ; ! ) • F (x) F Ax) 
n n-1 

can be verified quite easily by mathematical induction. Also, it is apparent that, when x = 1 , 
F (1) = F , the n Fibonacci number, and when x = 2, F (2) = P , the n Pell number. n n n n 

Further , when Pasca l ' s triangle is written in left-justified form, the sums of the e le -
ments along the rising diagonals give r i se to the Fibonacci numbers , and, in fact, those e l e -
ments are the coefficients of the Fibonacci polynomials. That i s , 

[(n-l)/2] 
(1.3) Fn(x) = 5(-;-)^. 
where [x] is the greatest integer contained in x, and 

( " ) is a binomial coefficient 
The first few Fibonacci polynomials are displayed below as well as the a r r ay of their 

coefficients. 
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Fibonacci Polynomials 

Ft(x) = 1 

F2(x) = x 

F3(x) = x2 + 1 

F4(x) = x3 + 2x 

F5(x) = x4 + 3x2 + 1 

F6(x) = x5 X ^ x 3 + 3x 

F7(x) = x6 + 5x^k,6x2 + 1 

~r 
F8(x) = x7 + 6x5 + 10x3 + 4x 

Coefficient Ar ray 

If one observes that, by rule of formation of the Fibonacci polynomials, if one writes 
the polynomials in descending order , to form the coefficient of the k te rm of F (x), one 
adds the coefficients of the k te rm of F n(x) and the (k - 1) term of F Q(x), the 

n—x n—u 
a r r ay of coefficients formed has the same rule of formation as Pascal1 s triangle when it is 
written in left-justified form, except that each column is moved one line lower, so that the 
coefficients formed are those elements that appear along the diagonals formed by beginning 
in the left-most column and preceding up one and right one throughout the left-justified Pascal 
triangle. Throughout this paper, this diagonal will be called the rising diagonal of such an 
ar ray . 

2. THE TRIBONACCI POLYNOMIALS 
Define the Tribonacci polynomials by 

T_i(x) = T0(x) = 0, Tt(x) = 1, T2(x) 

(2.1) W x ) x2Tn + 2(x) + xTn + 1(x) + Tn(x). 

th When x = 1, T (1) = T , the n Tribonacci number 1, 1, 2, 4, 7, 13, 24, 44, 81, 
T „ = T 2 + T - + T . The first few Tribonacci polynomials follow. 

Tribonacci Polynomials 
TjW = 1 

T2(x) = x2 

T3(x) = x4 + x 

T4(x) ^ \ x 6 + 2 ^ + 1 

T5(x) = x8 HN3X5 + 3x2 

T6(x) = x1 0 '+ 4 x N ^ 6 x 4 + 2x 

TT(x) = x12 + 5x8 + 10x6 + 7x3 + 1 

T8(x) = x14 + 6X11 + 15x8 + 16x5 + 6x2 
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Tribonacci Coefficient Ar ray 

1 
1 
1 
1 
1 
1 
1 
1 
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Left-Justified Trinomial Coefficient Ar ray 
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6 
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n = 0, 

1 

10 4 

45 30 

1, 

1 

15 

The Tribonacci coefficient a r r ay has the same rule of formation as the trinomial coefficient 
a r ray , except that each column is placed one line lower. Thus, the sums of the rows are the 
same as the sums of the rising diagonals of the trinomial coefficient a r ray , both sums yield-
ing the Tribonacci numbers 1, 1, 2, 4, 7, 13, 24, • • • , and the coefficients of the Tribonacci 
polynomials are the trinomial coefficients found on those same rising diagonals. That i s , 

(2.2) 
j=0 X ** 

. 2n-3j-2 

where 

( " ) , 

is the trinomial coefficient in the n row and j column where, as is usual, the left-most 
column is the zero column and the top row the zero row, and 

0), = ° B)>-
The Tribonacci polynomials a re generated by the matr ix Q3, 
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Q3 

so that 

(2.3) Q3 

W x ) Tn(x) T n - 1 « 
xT (x) + T ,(x) xT Ax) + T 0(x) xT 0(x) + T Q(x) n n -1 n-1 n-2 n-2 n-3 

Tn(x) T n - l ( x ) T n - 2 ( x ) 

A proof could be made by mathematical induction. That Q3 has the given form for n = 1 is 
apparent by inspection of Q3, element-by-element. Expansion of the matr ix product Q3 = 
Q3Q3 gives the elements of Q3 in the required form, making use of the recursion (2.1). 

Notice that det Q3 = l n = 1, analogous to the Fibonacci case. In fact, we can write 
an interesting determinant identity. Again using (2.1), we multiply row one of Q3 by x2 and 
add to row 2. Then we exchange rows 1 and 2 to write 

(2.4) (-1) = 

T n + 2 ( x ) 

T n + l W 

Tn(x) 

T n + l ( x ) 

Tn(x) 

Tn-lW 

Tn(x) 

T n - l ( x > 

T n - 2 ( x ) 

which becomes an identity for Tribonacci numbers when x = 1. 

3. THE QUADRANACCI POLYNOMIALS 

The Quadranacci polynomials are defined by T* (x) = T* (x) = T*(x) = 0, T*(x) = 1, 

(3.1) 

The f irst few values are 

T*+4(x) = x3T*+ 3(x) + x2T*+ 2(x) + xT*+ 1(x) + T*(x) . 

Ti(x) = 1 

T2(x) = x3 

T3(x) 

T4(x) = x9 4 ^ x 5 + x 

T5(x) = x12 + S x 8 ^ ^ + 1 

T6(x) = x15 + 4X11 + 6 x 7 > ^ x 3 

T7(x) = x18 + 5x14 + 10x10 + 10x6 + 3x2 
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Notice that the coefficient of the j term of T*(x) is the sum of the coefficients of 
the j t h term of T J . J W , (j - l ) S t term of T* 9(x), (j - 2 ) n d term of T* Q(x), and 

rd * n~* 
(j - 3) term of T ,(x) when the polynomials a re arranged in descending order . Then, 
the a r ray of coefficients, if each row were moved up one line, would have the same rule of 
formation as the left-justified a r r ay of quadranomial coefficients, arising from expansions of 
(1 +.x + x2 + x3)11, n = 0 , 1 , 2 , • • • . Thus, the coefficients of T*(x) are those found on the 
n ^ rising diagonal of the quadranomial triangle. Also, T*(l) = T*, the n Quadranacci 
number 1, 1, 2, 4, 8, 15, 29, 56, 108, • • • , T* + 4 = T* + T* + T* + T*. 

The Quadranacci polynomials are generated by the matrix Q4, 

Q4 

x3 1 0 0 \ 
x2 0 1 0 
x 0 0 1 
1 0 0 0 / 

.th so that Q? = (a..) has its j column given by a ^ = T*+ 2_/x>> a
2 j = x 2 T n + l - j ( x ) + 

x T n - J ( x ) + T n - l - 3 ( x ) ' a 3 j = ^ U - j W + T 5 - j W ' and % = T*+ 1_.(x), j = 1, 2, 3,4.. 
That Q £ has the form claimed above can be established by mathematical induction. That Q4 
has the stated form follows by inspection. Let Q^+ = (b ) and Q4 = (q.^). Then weex-
pand Qf+1 = Q 4 Q £ . The first row of Qf+ has the required form, for 

b l j = q l i a i j + q i 2 a 2 j + q i 3 a 3 j + q i 4 a 4 j 

= [x3T*+ 2_.(x)] + [x2T*+ 1_.(x) + xT*_.(x) + T* - ; U j (x ) ] + 0 + 0 

i(n+l)+2-j 

where we make use of (3.1). Computation of b 9 . , b Q . , and hA. is s imilar , and shows that 
n+1 3 J 3 

Q4 has the required form, which would complete the proof. 
We derive a determinant identity for Quadranacci polynomials from Q4 by forming the 

matr ix Q 4
n as follows. Add x3 times row 1 to row 2, making a' = T* (x). Add x2 

times row 1 and x3 times row 2 to row 3, producing a' = T*+4_.(x). Exchange rows l a n d 
n J J 

3. Then matrix Qf has 

a i j = T n + 4 - j ( x ) ' a 2 j = T n + 3 - j ( x ) ' a 3 j = T n + 2 - j ( x ) • 

and 

a4j = T n + l - j ( x ) ' j = l j 2 ' 3 ' 4> a n d d e t Q4* n = ( - D n + 1 

because there was one row exchange. That i s , for example, when x = 1, 
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(3.2) (-I)' n+1 

IT* n+3 

IT* 
1 n+2 
T* n+1 

T* n 

T * 
n+2 

T * 
n+1 
T* n 

T* , n-1 

n+1 

T* n 

n-1 

n-2 

T* ! n 

T* n 
n-1 

T * 
n-2 

T* n-3 

where T* is the n Quadranacci number. 

4. THE R-BONACCI POLYNOMIALS 

Define the r-bonacci polynomials by 

R - ( r - 2 ) ( x ) = R - ( r - l ) ( x ) = = R_1(x) = RQ(x) = 0, R^x) = 1, R2(x) = x r - 1 

(4.1) R ^_ (x) = x r " 1 R _,_ ,(x) + x r " 2 R ^ Q(x) + . . . + R (x) n+r n+r-1 n+r-2 n 

The r-bonacci polynomials, by their recursive definition will have the coefficients of R (x), 
written in descending order , given by the coefficients on the n rising diagonal of the left-
justified r-nomial coefficient a r ray , the coefficients arising from expansions of 

r l n 

(1 + x + x2 + -. . + x ) , 
That i s , 

(4.2) 

where 

Rn(x) 

(-I 

n = 0, 1, 2, 

( r -D(n- l ) - r j 

is the element in the n row and j column of the left-justified r-nomial tr iangle, and 

0). 0 when j > n 

The r-bonacci polynomials are generated by the r x r matr ix Q , 

Q. 

1 X 

r-2 
1 x 

r-3 
X 

X 

\ 1 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

• • o\ 

0 

0 

1 

•• o) 
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which is an identity matrix of order (r - 1) bordered on the left by a column of descending 
powers of x and followed by a bottom row of zeros . The matrix Q n has R (x) as the 
element in the upper left and R (x) in the lower left, with general element a., given by 

ii l j 

r-1+1 

k=l 

Proof of (4.3) is by mathematical induction. Let Q = (b..). Then b . - = x ~ , i = 1, 2, J ^ r IJ i i ' ' ' 
• • • , r; b. . = 1, j = i + 1, i = 1, 2, • • • , r; and b.. = 0 whenever j f 1 and j f i + 1. 
Let 

~n+l _, _n / v Q = Q Q = ( c ) . 
^ r ^ r r lj 

Then 

3ij =Sb ikakj = bilalk+2b-a' 
k=l k=2 

r 

^ i k - k j 

= x r - 1 R _,, .(x) + a . ^ . + 0 n+l- j 1+1,3 

k=l 

r- i+1 
r+ l -k - i 

^(n+D+1-j-k 
k=l 

/ j x i , x " ' R ^ ^ u i A i ,(x) , 

which is the required form for the general element of Q , completing the proof. 
If we operate upon Q as before, we can again make a determinant identity. Repeat-

r—1 st r—2 nd r~f~l—i 
edly add x times the (i - 1) row, x times the (i - 2) row, • • • , x times 
the first row to the i row, to produce a new i row with R ._- in its first column, for 
i = 2, 3, • • • , r - 1. Then make (r - l ) /2 row exchanges to put the elements in the columns 
in descending order . The matrix R formed has its general element given by 

r. . = R , ,.. . .(x) , 13 n+r+l-i-3v 

and its determinant has value (-1) •• ' *. That i s , when x = 1, the r-bonacci 
numbers 

, 0, 1, 1, 2, • •• , R ̂  = R ^ -, + R ̂  „ + • • • + R , 
' n+r n+r-1 n+r-2 n 

have the determinant identity 
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d e t R = 

n+r-1 n+r-2 

R n+r-2 

R n+1 
R 

n 

n+r-3 

R 

R n-1 

R n+1 
R n 

*n-r+3 

*n-r+2 

n -1 

n-r+2 

n-r+1 

(-1) (r-l)(2n+l)/2 

Notice that Eq. (1.2) gives 
det Q2 = 

for r = 2. Since we recognize 
F n + l W F n - l W " F n ( x ) = ^ det R 

Wx ) Fn-l ( x ) " Fn(x)l = X 

as the characteris t ic value [2] , [3] , [4] of sequences arising from the Fibonacci polynomi-
a l s , we define |det R | = 1 as the characteris t ic value of the sequences arising from the gen-
eralized Fibonacci polynomials, r ^ . 2 . Then, for example, (2.4) gives the characterist ic 
value |(-1)| = 1 for the sequences arising from the Tribonacci polynomials, while (3.2) is 
the a r ray giving the characterist ic value |(-1) | = 1 for the Quadranacci numbers. 

The matr ix R just defined has the interesting property that multiplication by Q p ro -
duces a matr ix of the same form. To clarify, let R = R = (r . . ) be the r x r matrix 

J r , n rj with R (x) appearing in the lower left corner , r. . = R , ,., . .(x). Then n ^ & ij n+r+1-i-j 

(4.4) R n Q = R r , 0 r r , n 

which is proved by mathematical induction as follows. Consider the matrix product R Q 
= (p..) for any n, where we observe that the first column of Q contains the multipliers 

*3 th r 

for the recursion relation for the polynomials R (x). The i row of R multiplied by r , n 
the first column of Q produces 

5u = X) r+ l -k p . . = 7 R . . . . . . (x) x " = R . .., «(x) = R/ ,-v, ,- . ..(x) , 
i l *-^* n+r+1-i-k n+r+l- i (n+l)+r+l- i - l 

k=l 

while, when j f 1, since the only non-zero elements of Q occur when i = j - 1, the i 
row of R times the j column of Q produces r , n J ^ r v 

.th 

p i j R n+r+ l - i - ( j - l ) R (n+ l )+r+ l - i - j ' j 2, 3, • • • , r , 

so that R Q = R ,.,, for any n. Then, we must have that R nQ = R .,, and, if r , n ^ r r , n + l J n , 0 ^ r r , l 

then 

k 1 R n Q = R . _, , 
r , O^r r , k - l 

R A Q k = (R n Q k _ 1 ) Q = R . n Q = R . , r , 0 ^ r r , 0 ^ r ^ r r , k - l ^ r r , k 
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which completes a proof of (4.4) by mathematical induction, 
If 

identity 
If we equate the elements in the upper left corner of R and R ^ Qn we obtain the 

r , n r , 0 ^ r 

V l ( x ) = V l ( x ) V l ( x ) + Rr_2(x)[xr-2Rn(x) +xr-3Rn_l(x) 

+ - + E n W x ) l 
+ R r _ 3 (x)[x r " 3 R n (x) + x r " 4 R n - 1 ( x ) 

(4.5) + . . . + R _ f x ) ] 
n-r+3 

+ R1(x)[xRn(x) + Bn_1(x)] + R0(x)Rn(x) 

Notice that the matr ix Q provides the multipliers for the recursion relation for the 
polynomials R (x) but does not depend upon the original values of the polynomials in the 
proof of (4.4). Let H (x) be any sequence of polynomials with r a rb i t ra ry start ing values 
H0(x), H^x), • • • , Hr_1(x), and with the same recursion relation as the polynomials R (x). 
Form the matrix R* = ( r * ) , r* = H , ,- . .(x). By the arguments used ear l ie r , we r , n rj IJ n+r+1-i-j J & 

can derive R* A Q n = R* and thus obtain r , 0 ^ r r s n 

H n + r - l = H r - l ( x ) R n + l ( x ) + Hr-2(x) ^ " X ^ + ̂ "X-l̂  
+ • • • + VrHJ^ 

+ H Q (x)[x r _ 3 R (x) + x r _ 4 R Ax) r - 3 L n n -1 
( 4 - 6 )

 + . . . + B + , W ] 
n-r+3 J 

+ Hi(x) [xRn(x) + R n - 1 (x) ] + H0(x)Rn(x) 
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