FIBONACCI AND APOLLONIUS

WALTER W. HORNER
Pittsburgh, Pennsylvania

Apollonius proposed the problem: Given three fixed circles, to find a circle which touches all of them. In general, there are eight solutions. Obviously, if the given circles are mutually tangent, the number of solutions is reduced to two. This case is a favorite with problemists for creating puzzlers and formulas have been found for their solution. In this note, we shall consider only the case where the given circles are mutually tangent and have their centers on the vertices of a Pythagorean triangle. The purpose of this note is to point out a relation between these five circles and any four consecutive Fibonacci numbers. Let r_{1}, r_{2}, r_{3} denote the given radii; R and r denote the required radii; and F_{n}, F_{n+1}, F_{n+2}, F_{n+3} any four consecutive Fibonacci numbers. Assume $r_{1}<r_{2}<r_{3}$ and $R>r$.

For convenience in computation, we shall denote our Fibonacci numbers by a, b, c, d. Then using b, c as generators, we get the Pythagorean triplets:

$$
\mathrm{c}^{2}-\mathrm{b}^{2} ; \quad 2 \mathrm{bc} ; \quad \mathrm{c}^{2}+\mathrm{b}^{2}
$$

Then by the condition of our problem, we get

$$
\begin{aligned}
& r_{1}+r_{2}=c^{2}-b^{2} \\
& r_{1}+r_{3}=2 b c \\
& r_{2}+r_{3}=c^{2}+b^{2} .
\end{aligned}
$$

Solving we get

$$
\begin{aligned}
& r_{1}=b(c-b)=a b \\
& r_{2}=c(c-b)=a c \\
& r_{3}=b(c+b)=b d \\
& r_{1}+r_{2}+r_{3}=c(b+c)=c d .
\end{aligned}
$$

Then

$$
\begin{aligned}
& r_{1} r_{2} r_{3}=a^{2} b^{2} c d \\
& r_{1} r_{2}=a^{2} b c \\
& r_{1} r_{3}=a b^{2} d \\
& r_{2} r_{3}=a b c d .
\end{aligned}
$$

The formula below is due to Col. Beard and applies to all cases where the given circles are mutually tangent.

The negative sign gives R (absolute value) and positive sign gives r. Substituting the values already found for r_{1}, r_{2}, r_{3} we get

$$
\begin{aligned}
R \text { or } r & =\frac{a^{2} b^{2} c d}{a^{2} b c+a b^{2} d+a b c d \mp 2 \sqrt{a^{2} b^{2} c d \cdot c d}} \\
R & =\frac{a b c d}{a c+b d-c d}=-c d \\
r & =\frac{a b c d}{4 c d-a b} .
\end{aligned}
$$

Hence in Fibonacci numbers we have

$$
\begin{aligned}
r_{1} & =F_{n} F_{n+1} \\
r_{2} & =F_{n} F_{n+2} \\
r_{3} & =F_{n+1} F_{n+3} \\
R & =F_{n+2} F_{n+3} \\
r & =\frac{F_{n} F_{n+1} F_{n+2} F_{n+3}}{4 F_{n+2} F_{n+3}-F_{n} F_{n+1}}
\end{aligned}
$$

All this holds for Lucas numbers, also.

REFERENCES

1. Kasner and Newman, Mathematics and the Imagination, pp. 13 and 14.
2. Col. R. S. Beard, "A Variation of the Apollonius Problem," Scripta Mathematica, Vol. 21 (1955), pp. 46-47.
