A POLYNOMIAL WITH GENERALIZED FIBONACCI COEFFICIENTS

BRUCE W. KING

Adiron dack Community College, Glens Falls, New York

In Elementary Problem B-135 (this Quarterly, Vol. 6, No. 1, p. 90), L. Carlitz asks readers to show that
(1)

$$
\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{k}} 2^{\mathrm{n}-\mathrm{k}-1}=2^{\mathrm{n}}-\mathrm{F}_{\mathrm{n}+2}
$$

and that
(2)

$$
\sum_{k=0}^{n-1} L_{k} 2^{n-k-1}=3\left(2^{n}\right)-L_{n+2}
$$

The problem invites generalization in at least two ways. It is natural to investigate

$$
\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{~T}_{\mathrm{k}} 2^{\mathrm{n}-\mathrm{k}-1}
$$

where T_{k} is the generalized Fibonacci sequence with $T_{1}=a$ and $T_{2}=b$. It is not difficult to show by induction that

$$
\begin{equation*}
\sum_{\mathrm{k}=0}^{\mathrm{n}=1} \mathrm{~T}_{\mathrm{k}} 2^{\mathrm{n}-\mathrm{k}-1}=\mathrm{T}_{2}\left(2^{\mathrm{n}}\right)-\mathrm{T}_{\mathrm{n}+2} \tag{3}
\end{equation*}
$$

The relations given in (1) and (2) are, thus, a consequence of (3).
A second generalization may be obtained by trying to determine whether anything worthwhile can be said about the polynomial

$$
\begin{equation*}
\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{~T}_{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k}-1} \tag{4}
\end{equation*}
$$

This seems to be a more difficult problem than that posed by the first generalization, and the rest of this note is devoted to it.

To begin with, evaluating (4) for several values of n suggests that

$$
\begin{equation*}
\sum_{k=0}^{n-1} T_{k} x^{n-k-1}=a \sum_{k=0}^{n-1} F_{k-2} x^{n-k-1}+b \sum_{k=0}^{n-1} F_{k-1} x^{n-k-1} \tag{5}
\end{equation*}
$$

This can be proved by induction. For $\mathrm{n}=1$, both members of (5) reduce to $\mathrm{b}-\mathrm{a}=\mathrm{T}_{0}$. (We use $x^{0} \equiv 1$ here.) If we now suppose (5) true for some integer $n \geq 1$, then

$$
\begin{aligned}
\sum_{k=0}^{n} T_{k} x^{n-k} & =x \sum_{k=0}^{n-1} T_{k} x^{n-k-1}+T_{n} \\
& =x\left[a \sum_{k=0}^{n-1} F_{k-2} x^{n-k-1}+b \sum_{k=0}^{n-1} F_{k-1} x^{n-k-1}\right]+T_{n}
\end{aligned}
$$

and, since $T_{n}=a F_{n-2}+b F_{n-1}$,

$$
\begin{aligned}
& \sum_{k=0}^{n} T_{k} x^{n-k}= a \sum_{k=0}^{n-1} F_{k-2} x^{n-k} \\
&+a F_{n-2} \\
&+b \sum_{k=0}^{n-1} F_{k-1} x^{n-k}+b F_{n-1} \\
&= a\left[\sum_{k=0}^{n-1} F_{k-2} x^{n-k}+F_{n-2}\right]+b\left[\sum_{k=0}^{n-1} F_{k-1} x^{n-k}+F_{n-1}\right] \\
&= a \sum_{k=0}^{n} F_{k-2} x^{n-k}+b \sum_{k=0}^{n} F_{k-1} x^{n-k} .
\end{aligned}
$$

This completes the proof of (5). The problem has, thus, been reduced slightly to the problem of evaluating an expression such as

$$
\sum_{k=1}^{n} F_{k} x^{n-k}
$$

in closed form, for such a result would lend some significance to the right member of (5).
Let us define

$$
f_{n}(x)=\sum_{k=1}^{n} F_{k} x^{n-k}=x^{n} \sum_{k=1}^{n} \frac{F_{k}}{x^{k}}
$$

Now, it is known [1, p. 43] that the power series

$$
\sum_{k=1}^{\infty} F_{k} t^{k-1}
$$

converges to

$$
\frac{1}{1-t-t^{2}}
$$

The radius of convergence is

$$
\lim _{\mathrm{k} \rightarrow \infty} \frac{\mathrm{~F}_{\mathrm{k}}}{\mathrm{~F}_{\mathrm{k}+1}}=\frac{1}{\phi}
$$

where

$$
\phi=\frac{1+\sqrt{5}}{2}
$$

is the Golden Ratio. Thus, for a fixed value of t in the interval of convergence

$$
-\frac{\sqrt{5}-1}{2}<\mathrm{t}<\frac{\sqrt{5}-1}{2}
$$

it follows that

$$
\frac{1}{1-\mathrm{t}-\mathrm{t}^{2}}=\sum_{\mathrm{k}=1}^{\infty} \mathrm{F}_{\mathrm{k}} \mathrm{t}^{\mathrm{k}-1}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{k}} \mathrm{t}^{\mathrm{k}-1}+\mathrm{R}_{\mathrm{n}}
$$

where $R_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus,

$$
\sum_{k=1}^{n} F_{k} t^{k-1}=\frac{1}{1-t-t^{2}}-R_{n}
$$

or, what is the same,
[Dec.

$$
\sum_{k=1}^{n} F_{k} t^{k}=\frac{t}{1-t-t^{2}}-t R_{n}
$$

If we now let $t=1 / \mathrm{x}$ then, for $\mathrm{x}<-\phi$ or $\mathrm{x}>\phi$,

$$
\sum_{k=1}^{n} \frac{F_{k}}{x^{k}}=\frac{\frac{1}{x}}{1-\frac{1}{x}-\frac{1}{x^{2}}}-\frac{1}{x} R_{n}=\frac{x}{x^{2}-x-1}-\frac{1}{x} R_{n}
$$

and

$$
x^{n} \sum_{k=1}^{n} \frac{F_{k}}{x^{k}}=\frac{x^{n+1}}{x^{2}-x-1}-x^{n-1} R_{n}
$$

We have, therefore,

$$
\begin{equation*}
f_{n}(x)=\frac{x^{n+1}}{x^{2}-x-1}-x^{n-1} R_{n} \tag{6}
\end{equation*}
$$

The problem is thus essentially reduced to finding the remainder R_{n} in some suitable form. Investigating (6) for the first few values of n suggests that

$$
R_{n}=\frac{F_{n+1} x+F_{n}}{x^{n-1}\left(x^{2}-x-1\right)}
$$

This, in turn, suggests that

$$
f_{n}(x)=\frac{x^{n+1}}{x^{2}-x-1}-x^{n-1}\left[\frac{F_{n+1} x+F_{n}}{x^{n-1}\left(x^{2}-x-1\right)}\right]
$$

That is,

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k} x^{n-k}=\frac{x^{n+1}-F_{n+1} x-F_{n}}{x^{2}-x-1} \text { for } x \neq \frac{1 \pm \sqrt{5}}{2} \tag{7}
\end{equation*}
$$

We will prove (7) by induction. For $\mathrm{n}=1$, both members reduce to 1. If (7) is true for some integer $n \geq 1$, then

$$
\begin{aligned}
\sum_{k=1}^{n+1} F_{k} x^{n-k+1} & =\sum_{k=1}^{n} F_{k} x^{n-k+1}+F_{n+1} \\
& =x \sum_{k=1}^{n} F_{k} x^{n-k}+F_{n+1} \\
& =x \frac{x^{n+1}-F_{n+1} x-F_{n}}{x^{2}-x-1}+F_{n+1} \\
& =\frac{x^{n+2}-F_{n+1} x^{2}-F_{n} x+F_{n+1} x^{2}-F_{n+1} x-F_{n+1}}{x^{2}-x-1} \\
& =\frac{x^{n+2}-\left(F_{n}+F_{n+1}\right) x-F_{n+1}}{x^{2}-x-1} \\
& =\frac{x^{n+2}-F_{n+2} x-F_{n+1}}{x^{2}-x-1} .
\end{aligned}
$$

This completes the proof of (7).
Now, returning to the summations in (5),

$$
\begin{aligned}
\sum_{k=0}^{n-1} F_{k-2} x^{n-k-1}= & F_{-2} x^{n-1}+F_{-1} x^{n-2}+F_{0} x^{n-3}+\sum_{k=3}^{n-1} F_{k-2} x^{n-k-1} \\
= & -x^{n-1}+x^{n-2}+\frac{1}{x^{3}} \sum_{k=3}^{n-1} F_{k-2} x^{n-k+2} \\
= & -x^{n-1}+x^{n-2} \\
& +\frac{1}{x^{3}}\left[\sum_{k=3}^{n+2} F_{k-2} x^{n-k+2}-F_{n-2} x^{2}-F_{n-1} x-F_{n}\right]
\end{aligned}
$$

Using the change of variable $\mathrm{j}=\mathrm{k}-2$ in the summation on the right, we have

$$
\begin{aligned}
\sum_{k=0}^{n-1} F_{k-2} x^{n-k-1}= & -x^{n-1}+x^{n-2}+\frac{1}{x^{3}} \sum_{j=1}^{n} F_{j} x^{n-j} \\
& -\frac{F_{n-2} x^{2}+F_{n-1} x+F_{n}}{x^{3}}
\end{aligned}
$$

After substituting from (7), combining fractions and simplifying, the result is that

$$
\begin{equation*}
\sum_{k=0}^{n-1} F_{k-2} x^{n-k-1}=\frac{x^{n}(2-x)-F_{n-2} x-F_{n-3}}{x^{2}-x-1} \tag{8}
\end{equation*}
$$

In a similar manner, we can use (7) to show that

$$
\begin{equation*}
\sum_{k=0}^{n-1} F_{k-1} x^{n-k-1}=\frac{x^{n}(x-1)-F_{n-1} x-F_{n-2}}{x^{2}-x-1} \tag{9}
\end{equation*}
$$

Now substitute (8) and (9) into (5), combine fractions and arrange the numerator in powers of x. The result is

$$
\begin{aligned}
\sum_{k=0}^{n-1} T_{k} x^{n-k-1}= & \frac{1}{x^{2}-x-1}\left\{x^{n}[(b-a) x+(2 a-b)]\right. \\
& \left.-\left[a F_{n-2}+b F_{n-1}\right] x-\left[a F_{n-3}+b F_{n-2}\right]\right\}
\end{aligned}
$$

Consequently, we have the following generalization from Carlitz' problem:

$$
\begin{equation*}
\sum_{k=0}^{n-1} T_{k} x^{n-k-1}=\frac{\left(T_{0}+T_{-1}\right) x^{n}-T_{n} x-T_{n-1}}{x^{2}-x-1} \tag{10}
\end{equation*}
$$

It is not difficult to see that (10) reduces to (3) when $\mathrm{x}=2$. Other results of interest can be obtained by letting $\mathrm{x}= \pm 1$ in (10).

REFERENCE

1. Brother Alfred Brousseau, An Introduction to FibonacciDiscovery, The FibonacciAssociation, 1965.
