1. M. F. Lynch, "Subject Indexes and Automatic Document Retrieval: The Structure of Entries in Chemical Abstracts Subject Indexes," J. Documentation, 22 (1966), pp. 167-185.
2. J. E. Armitage, M. F. Lynch, J. H. Petrie and M. Belton, "Experimental use of a Program for Computer-Aided Subject Index Production," Information Storage and Retrieval, 6 (1970), pp. 79-87.
3. M. F. Lynch, J. H. Petrie, "A Program Suite for the Production of Articulated Subject Indexes," Computer Journal (in the press).

LETTER TO THE EDITOR

Dear Editor:

Professor Dr. Tibor Sǎlăt of Bratislava has pointed out two corrigenda to my article on arithmetic progression, April, 1973, Fibonacci Quarterly, pp. 145-152.

In the proof of Lemma 2.2, one may not assume that ad and $\mathrm{c} /(\mathrm{a}, \mathrm{c})$ are relatively prime. After the second display in the proof, proceed as follows:

$$
\begin{aligned}
\left(i-i^{\prime}\right) a d \equiv\left(j^{\prime}-j\right) b c & & (\bmod c) \\
\left(i-i^{\prime}\right) a d \equiv 0 & & (\bmod c)
\end{aligned}
$$

Since $(c, d)=1$, we get $\left(i-i^{\prime}\right) a \equiv 0(\bmod c)$. Division by (a, c) yields

$$
\left(i-i^{\prime}\right)(a /(a, c)) \equiv 0 \quad(\bmod c /(a, c))
$$

hence

$$
\mathrm{i}-\mathrm{i}^{\prime} \equiv 0 \quad(\bmod \mathrm{c} /(\mathrm{a}, \mathrm{c}))
$$

On page 151, insert a "1-" before II in the second, third, and fourth displays.
How far can Theorem 4.1 be generalized to other polynomials?

