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1. INTRODUCTION 

In [l] , Hoggatt and Hansell show that the product of the six binomial coefficients su r -
rounding any part icular entry in Pasca l ' s triangle is an integral square. In the preceding a r -
ticle in this Journal [2] , Moore generalizes this resul t by showing that the product of the bi-
nomial coefficients forming a regular hexagon with sides on the horizontal rows and main 
diagonals of Pasca l ' s triangle and having j + 1 entries per side is an integral square if j is 
odd. In the present paper, we derive a fundamental lemma which leads to a generalization of 
Moore1 s resul t and enables us to show that a variety of other interesting configurations of b i -
nomial coefficients also yield products which are integral squares. 

It will suit our purpose to represent Pasca l ' s triangle (or, more precisely, a portion 
of it) by a lattice of dots as in Fig. 1. We will have occasion to refer to various polygonal 
figures and when we do, unless expressly stated to the contrary, we shall always mean a 
simple closed polygonal curve whose vert ices are lattice points. Occasionally, it will be 
convenient to represent a small portion of Pasca l ' s triangle by le t ters arranged in the proper 
position. 

Figure 1 

2. THE FUNDAMENTAL LEMMA AND ITS CONSEQUENCES 

Lemma 1. The product of the binomial coefficients at the vert ices of a pair of para l le l -
ograms oriented as in Fig. 2 or Fig. 3 is an integral square. We note that the paral lelograms 
in any pair may overlap and, if they do, the common ver t ices , if any, must be included twice 
in the product or , equivalently, must be excluded entirely. 
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Figure 2 

Figure 3 

Proof. In the first case , for suitable integers m, n, r , s, and t, the binomial co-
efficients in question would be 

/ m \ / m + r \ / m + s \ / m + s + r \ 
\n J ' \ n + r / ' ^ n J' ( n + r J9 

( m + r \ / m \ / m + s + r \ / m + s \ 

n + r + ty ' I n + r + t l ' I n + s + r + t ) ' I n + s + r + 11 ' 

Thus the desired product is 

(m + r)l (m + s)! 
n!(m - n)! " (n + r)!(m - n)! ' nl(m - n + s)! 

(m + s + r)! ^ (m + r)I ml 
(n + r)!(m - n + s)! " (n + r + t)!(m - n - t)! ' (n + r + t)!.(m - n - r - t)! 

(m + s + r)I (m + s)! 
(n + s .+ r + t)!(m - n - t)! ' (n + s + r + t)! (m - n - r - t)! * 

This is clearly the square of a rational number. Since it is also an integer, it is an integral 
square as claimed. The argument for the second case is the same and we omit the details. 

As a first consequence of Lemma 1, we now obtain the theorem of Hoggatt and Hansell. 
Theorem 2. The product of the six binomial coefficients surrounding ( m ] i nPascaPs 

triangle is an integral square. 
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Proof. Let d = ( J and a, b, c, e5 f, and g be the six adjacent binomial coef-
ficients as arranged in the a r ray 

a e 
b d f 

c g 

Since a, b, c, d and e, d, g, f form parallelograms as in Lemma 1, it is immediate that 
both abcd2efg and abcefg are integral squares as claimed. 

By precisely the same argument, we obtain the following generalization of Theorem 2 
which is different from the generalization of Moore mentioned above. 

Theorem 3. Let m > 1 and n > 1 be integers and let H be a convex hexagon whose 
sides lie on the horizontal rows and main diagonals of Pascal1 s triangle. Let the numbers of 
elements on the respective sides of H be m, n, m, n, m, and n in that order , with m 
being the number of elements along the bottom side. Then the product of the binomial coef-
ficients at the ver t ices of H is an integral square. 

Proof. Of course if m = n = 2, this reduces to Theorem 2. In any case, we consider 
two m by n parallelograms with a common vertex and let a, b, c, d, e9 f, and g denote 
the binomial coefficients at the vert ices of the rectangles as indicated in Fig. 4. Clearly, 
a, b , c, g, f, and e lie at the vert ices of a hexagon H of the type described and any such 
H can be obtained in this way. Therefore, it is again immediate from Lemma 1 that abcd2efg 
and abcefg are integral squares. 

a e 

c g 
Figure 4 

Now let us call the hexagon of Hoggatt and Hans ell a fundamental hexagon. Let P be 
any simple closed polygonal figure. We say that P is tiled with fundamental hexagons if P 
is "covered" by a set f of fundamental hexagons in such a way that 

(i) the vert ices of each F in f a re coefficients in P or in the interior of P , 
(ii) each boundary coefficient of P is a vertex of precisely one F in ^ , and 

(iii) each interior coefficient of P is interior to some F in f or is a vertex shared 
by precisely two elements of "f B 
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For example, in Fig. 5, G can be tiled by fundamental hexagons and H cannot. Now 
using the result of Theorem 2 and repeating the essentials of its proof we obtain the following 
quite general result which leads directly to a generalization of the resul t of Moore. 

Figure 5 

Theorem 4. The product of the binomial coefficients in (the boundary of) any polygonal 
figure that can be tiled with fundamental hexagons is an integral square. 

To see that this generalizes the result of Moore, we prove the following theorem. 
Theorem 5. The product of the binomial coefficients in (the boundary of) any convex 

hexagon with sides oriented along the horizontal rows and main diagonals of Pasca l ' s triangle 
is an integral square provided the number of coefficients on each side is even. 

Proof. In view of Theorem 4, it suffices to show that any hexagon of the type described 
can be tiled with fundamental hexagons. Let H be any such hexagon with n coefficients on 
its boundary. Plainly, the least possible value of n is 6 which occurs only in the case of 
a fundamental hexagon. Thus, the result is trivially true in the first possible case. Suppose 
that it is true for all possible n with n < k where k is any possible value of n with k > 
6. Since k > 6, it follows that at leas t one side St of H, must contain at least four coef-
ficients. Without loss of generality, we may presume that St is the lower left-hand side of 
H, as indicated in Fig. 6. We may also number the other sides in a counterclockwise di-
rection around PL. By the induction assumption, it suffices to divide H, into two hexagons 
H. and H. of the type described and with i < k and j < k. We proceed as follows. Let 
c denote the third coefficient up from the lower end of Si and let S be the chord of H, ex-
tending from c and parallel to S2 as in Fig. 6. Let g be the right-hand end point of S. 
We distinguish two cases . 

* * * * 

Figure 6 

Case 1. If g is on S3 as in Fig. 7, then the figure a, b, d, h, f, e is an H. of the 
desired form since the segment dh contains the same number of coefficients as S2 and the 
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Sfi ^» ^^S4 

d S' h 

* V * * <> * 
g - S3 

Figure 7 

other four sides contain two coefficients each. Also, if we let s[ denote the upper par t of 
St starting at c, let S[ denote the line segment eg", and let Sj denote the upper par t of 
S3 starting at g, then Sj contains two fewer coefficients than Sl9 S\ contains two more 
coefficients than S2, and S3 contains two fewer coefficients than S3. Thus, the hexagon 
formed by s\, s j , S3, S4, S5, and S6 is an H. of the desired type. Finally, since s\ l ies 
on the interior of H, (except for its endpoints), it is clear that i < k and j < k as desired. 

Case 2. In this case , g l ies on S4 and the appropriate diagram is in Fig. 8. Since 
the remainder of the argument is essentially the same as for Case 2, we omit the details. 
This completes the proof. 

Figure 8 

We observe that the convexity conditions of Theorems 3 and 5 are necessary since 
neither the product of the corner coefficients nor of the boundary coefficients of the hexagon 
in Fig. 9 is an integral square. Also, it is easy to find examples of convex hexagons where 
the resul ts of Theorems 3 and 5 do not hold if the condition on the number of elements per 
side is not met. In fact, we conjecture that the conditions of both theorems are necessary 
as well as sufficient. 

Figure 9 
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3. SOME ADDITIONAL OBSERVATIONS 

In Section 2, we were pr imar i ly concerned with hexagons, but it is c lear from the fun-
damental lemma that anything that can be "covered" with pairs of properly oriented para l le l -
ograms has the property that the product of those coefficients at the vert ices of an odd num-
ber of the paral lelograms in any such covering is an integral square. Also, if Pt and P2 

a re integral squares which are products of integers and P3 is the product of those integers 
common to P 1 and P2 , then P ^ /P3 is also an integral square. With these ideas in 
mind, it is possible to construct an infinite variety of configurations of binomial coefficients 
whose products are integral squares. The first two examples of such configurations are con-
tained in the following theorems. 

Theorem 6. Let K be amy convex octagon with sides oriented along the horizontal and 
vertical rows and main diagonals of Pasca l ' s triangle. Let the number of ver t ices on the v a r -
ious sides be 2r , 2s, t, 2u9 2v, 2u, t, and 2s as indicated in Fig. 10 where r , s, t, u, 
and v a re positive integers. Then the product of the boundary coefficients is an integral 
square. 

2v 
* * * *—-

feiu. f * ^ ^ * * 

/
{ * * * * * 

* * * * * * 

t Y * * * * * * * f t 
1 * * * * * * * * i 

\
* * * * * * * 

* * * * * *— 
2r 

Figure 10 

Proof. The proof of this theorem is essentially the same as for Theorem 5 and will be 
omitted. 

In Theorem 6, the convexity condition is not necessary, but it is not presently clear 
how the theorem should read if this condition is removed. While the octagons of Theorem 6 
can be tiled with fundamental hexagons, the octagon of Fig. 11 cannot. It can, however, be 
tiled with pairs of properly oriented parallelograms (or a combination of parallelograms and 
fundamental hexagons, if you prefer) and it follows from the fundamental lemma that the prod-
uct of the boundary coefficients is an integral square. 

Also note that the products of the corner coefficients in Fig. 10 of Theorem 6 and in 
Fig. 11 need not be squares. However, as the following theorem shows, at least one c lass of 
octagons exists for which the product of the corner coefficients is always an integral square. 

/ 2 s 
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Figure 11 

Theorem 7. Let K be a convex octagon formed as in Fig. 12 by adjoining paral le lo-
grams with r and s and r and t elements on a side to a parallelogram with r elements 
on each side. Then the product of the corner coefficients of the octagon is an integral square. 

Figure 12 

Proof. Let a, b, c, d, e} f, g, and h denote the corner coefficients of the octagon 
as indicated in Fig. 12. Since a, d, e, and h and b, c, f, and g a re the vert ices of 
rectangles oriented as in the fundamental lemma, it is c lear that their product is an integral 
square as claimed. 

Again it is c lear that the convexity condition of Theorem 7 is not necessary. The most 
general statement which we can make at the present time is that the product of the corner co-
efficients of any octagon formed by joining (as in Fig. 13) the ver t ices of pai rs of paral le lo-
grams oriented as in the fundamental lemma is an integral square. It is not c lear that even 
this condition is necessary. See Usiskin [3]. 
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Figure 13 

We now give, without proof, several examples of configurations of binomial coefficients 
whose produces a re integral squares. Each example given is a (sometimes not simple, 
closed, or connected) polygon and it is intended that one consider the product of the boundary 
coefficients only. Note that it is quite possible to find solid and other non-polygonal a r rays 
whose products are integral squares 
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