THE Z TRANSFORM AND THE FIBONACCI SEQUENCE

WILLIAM L. MATHIS
Texas Tech University, Lubbock, Texas

Definition. The z transform of $f(n)$ is the function

$$
\zeta[f(n)]=F(z)=\sum_{n=0}^{\infty} f(n) z^{-n}, \quad|z|>\frac{1}{\rho}
$$

where z is a complex variable and ρ is the radius of convergence of the series. Applying the z transform to the recursion relation

$$
\mathrm{f}_{\mathrm{n}+2}=\mathrm{f}_{\mathrm{n}+1}+\mathrm{f}_{\mathrm{n}}
$$

we obtain

$$
\zeta\left[\mathrm{f}_{\mathrm{n}+2}\right]=\zeta\left[\mathrm{f}_{\mathrm{n}+1}+\mathrm{f}_{\mathrm{n}}\right]=\zeta\left[\mathrm{f}_{\mathrm{n}+1}\right]+\zeta\left[\mathrm{f}_{\mathrm{n}}\right]
$$

Using the shifting theorem for z transforms,

$$
\zeta[f(n+m)]=z^{m}\left[F(z)-F_{m}(z)\right]
$$

where

$$
\mathrm{F}_{\mathrm{m}}(\mathrm{z})=\sum_{\mathrm{k}=0}^{\mathrm{m}-1} \mathrm{f}(\mathrm{k}) \mathrm{z}^{-\mathrm{k}}
$$

which yields

$$
\mathrm{z}^{2}\left[\mathrm{~F}(\mathrm{z})-\mathrm{F}_{2}(\mathrm{z})\right]=\mathrm{z}\left[\mathrm{~F}(\mathrm{z})-\mathrm{F}_{1}(\mathrm{z})\right]+\mathrm{F}(\mathrm{z})
$$

and

$$
\left(z^{2}-z-1\right) F(z)=z^{2} F_{2}(z)-z F_{1}(z)
$$

Hence

$$
F(z)=\frac{z^{2}\left[f(0)-f(1) z^{-1}\right]-z[f(0)]}{z^{2}-z-1}
$$

where

$$
z^{2}-z-1 \neq 0
$$

Since $f_{0}=0$ and $f_{1}=1$, we have

$$
F(z)=\frac{z}{z^{2}-z-1}
$$

$F(z)$ is a Laurent series. Therefore, we can multiply $F(z)$ by z^{n-1} and integrate it around a circle for which $|z|>R$. This gives
or

Hence

Therefore

$$
\int_{\Gamma} F(\mathrm{z}) \mathrm{z}^{\mathrm{n}-1} \mathrm{dz}=2 \pi \mathrm{if}(\mathrm{n})
$$

$$
\mathrm{f}(\mathrm{n})=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \mathrm{F}(\mathrm{z}) \mathrm{z}^{\mathrm{n}-1} \mathrm{dz}=\Sigma \text { Residues of } \mathrm{F}(\mathrm{z}) \mathrm{z}^{\mathrm{n}-1}
$$

$$
\begin{aligned}
\mathrm{f}(\mathrm{n}) & =\Sigma \operatorname{Residues}\left[\frac{\mathrm{z}}{\left(\mathrm{z}-\frac{1+\sqrt{5}}{2}\right)\left(\mathrm{z}-\frac{1-\sqrt{5}}{2}\right)}\right] \mathrm{z}^{\mathrm{n}-1} \\
& =\lim _{\mathrm{z} \rightarrow \frac{1+\sqrt{5}}{2}}\left[\frac{\mathrm{z}^{\mathrm{n}}}{\mathrm{z}-\frac{1-\sqrt{5}}{2}}\right]+\lim _{\mathrm{z} \rightarrow \frac{1-\sqrt{5}}{2}}\left[\frac{\mathrm{z}^{\mathrm{n}}}{\mathrm{z}-\frac{1+\sqrt{5}}{2}}\right] \\
& =\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}} / \sqrt{5}-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}} / \sqrt{5} .
\end{aligned}
$$

$$
\mathrm{f}(\mathrm{n})=\left(\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}\right) / \sqrt{5}
$$

where

$$
\alpha^{\mathrm{n}}=\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}
$$

and

$$
\beta^{\mathrm{n}}=\left(\frac{1-\sqrt{\overline{5}}}{2}\right)^{\mathrm{n}}
$$

which is Binet's formula.

