MORE HIDDEN HEXAGON SQUARES

CARL F. MOORE
Tacoma, Washington

In [1], Hoggatt and Hansell prove the following remarkable result.
Theorem 1. Let $\binom{m}{n}$ be such that $0<n<m$ and $2 \leq m$. Then the product of the six binomial coefficients surrounding $\binom{m}{n}$ is a perfect integral square.

In this paper, we show that this theorem is a special case of a more general result. In particular, we prove the following theorem.

Theorem 2. Let H_{j}, for j odd, be a hexagon of entries from Pascal's triangle with $j+1$ entries per side and with the sides lying along main diagonal and horizontal rows of the triangle. Then the product of the entries forming H_{j} is an integral square.

Proof. Let j be a positive odd integer and let n and r be integers with $1 \leq \mathrm{n}-\mathrm{j}$, $j \leq r \leq n$, and $0 \leq r \leq n-j$. If H_{j} is centered at $\binom{n}{r}$, then it can be displayed in the following way where we label the sides I, \cdots, VI.

$$
\begin{aligned}
& \binom{n-j}{r-j}\binom{n-j}{r-j+1} \cdots\binom{n-j}{r-1}\binom{n-j}{r} \\
& \begin{array}{ccc}
\left.\begin{array}{c}
n-j+1 \\
r-j
\end{array}\right) & \text { I } & \binom{n-j+1}{r} \\
\therefore \quad \text { VI } & & \text { II }
\end{array} \\
& \binom{n-1}{r-j} \\
& \binom{n-1}{r+j-1} \\
& \binom{n}{r-j} \\
& \binom{n}{n+j} \\
& \binom{n+1}{r-j+1} \\
& \text { • V } \\
& \text { III } \\
& \binom{n+j-1}{r-1} \quad\binom{n+j-1}{r+j} \\
& \binom{n+j}{n}\binom{n+j}{r+1} \quad \begin{array}{l}
\text { IV } \\
\cdots\binom{n+j}{r+j-1}\binom{n+j}{r+j}
\end{array}
\end{aligned}
$$

Of course, each coefficient is of the form $\frac{a}{b c}$ where a, b, and c are the appropriate factorials. We prove that the desired product is a square by proving that the product of the $\mathrm{a}^{\prime} \mathrm{s}$ is a square and similarly for the $b^{\prime} s$ and $c^{\prime} s$. The products of the $a^{\prime} s$ in sides I and IV, respectively, are clearly $[(n-j)!]^{j+1}$ and $[(n+j)!]^{j+1}$ and both are squares since j is odd. Also, the product of the a^{\prime} 's in II, III, V, and VI and not in I or IV is clearly

$$
[(n-j+1)!(n-j+2)!\cdots(n+j-1)!]^{2}
$$

Similarly, the products of the b^{\prime} 's in III and VI, respectively, are $[(r+j)!]^{j+1}$ and $[(r-j)!]^{j+1}$, and the product of the b's in I, II, IV and V and not in UI and VI is

$$
[(r-j+1)!(r-j+2)!\cdots(r+j-1)!]^{2} .
$$

Finally, the products of the $c^{\prime} s$ in II and V, respectively, are $[(n-r-j)!]^{j+1}$ and $[(n-r+j)!]^{j+1}$ and the product of the $c^{\prime} s$ in I, III, IV and VI and not in II and V is

$$
[(n-j-r+1)!(n-j-r+2)!\cdots(n+j-r-1)!]^{2} .
$$

Therefore, the product of the coefficients in question is a rational square and, since the product is a product of integers, it is also an integral square as claimed.

REFERENCE

1. V. E. Hoggatt, Jr., and Walter Hansell, "The Hidden Hexagon Squares," Fibonacci Quarterly, Vol. 9 (1971), pp. 120, 133.

THE BALMER SERIES AND THE FIBONACCI NUMBERS

J. WLODARSKI

Proz-Westhoven, Federal Republic of Germany

In 1885 , J. J. Balmer discovered that the wave lengths (λ) of four lines in the hydrogen spectrum (now known as "Balmer Series") can be expressed by the multiplication of a numerical constant $\mathrm{k}=364.5 \mathrm{~nm} \quad\left(1 \mathrm{~nm}=1\right.$ nanometre $\left.=10^{-9} \mathrm{~m}\right)$ by the simple fractions as follows:
(1)

$$
\begin{gather*}
656=\frac{9}{5} \times 364.5 \\
486=\frac{4}{3} \times 364.5=\frac{16}{12} \times 364.5 \\
434=\frac{25}{21} \times 364.5 \\
410=\frac{9}{8} \times 364.5=\frac{36}{32} \times 364.5 . \tag{4}
\end{gather*}
$$

(2)
(3)

By extending both fractions, $4 / 3$ and $9 / 8$, be recognized the successive numerators as the squares $3^{2}, 4^{2}, 5^{2}$ and 6^{2}, and the denominators as the square-differences $3^{2}-2^{2}$, $4^{2}-2^{2}, 5^{2}-2^{2}, 6^{2}-2^{2}$.

From this he developed his famous formula:
[Continued on page 540.]

