MORE HIDDEN HEXAGON SQUARES

CARL F. MOORE Tacoma, Washington

In [1], Hoggatt and Hansell prove the following remarkable result.

<u>Theorem 1.</u> Let $\binom{m}{n}$ be such that $0 \le n \le m$ and $2 \le m$. Then the product of the six binomial coefficients surrounding $\binom{m}{n}$ is a perfect integral square.

In this paper, we show that this theorem is a special case of a more general result. In particular, we prove the following theorem.

<u>Theorem 2.</u> Let H_j , for j odd, be a hexagon of entries from Pascal's triangle with j + 1 entries per side and with the sides lying along main diagonal and horizontal rows of the triangle. Then the product of the entries forming H_j is an integral square.

<u>Proof.</u> Let j be a positive odd integer and let n and r be integers with $1 \le n - j$, $j \le r \le n$, and $0 \le r \le n - j$. If H_j is centered at $\binom{n}{r}$, then it can be displayed in the following way where we label the sides I, \cdots , VI.

$$\binom{n-j}{r-j}\binom{n-j}{r-j+1}\cdots\binom{n-j}{r-1}\binom{n-j}{r} \\ \binom{n-j+1}{r-j} & I & \binom{n-j+1}{r+1} \\ \vdots & \forall I & II & \ddots \\ \binom{n-j}{r-j} & & \binom{n-j+1}{r+j-1} \\ \binom{n-j}{r-j} & & \binom{n-j+1}{r+j-1} \\ \binom{n-j}{r-j} & & \binom{n-j}{r+j-1} \\ \binom{n+j-1}{r-j+1} & & \binom{n+j}{r+j} \\ \vdots & \ddots & \forall & III & \ddots \\ \binom{n+j-1}{r-1} & & \binom{n+j-1}{r+j-1} \\ \binom{n+j-1}{r+j-1} & \cdots\binom{n+j-1}{r+j-1}\binom{n+j}{r+j} \\ \end{cases}$$

Of course, each coefficient is of the form $\frac{a}{bc}$ where a, b, and c are the appropriate factorials. We prove that the desired product is a square by proving that the product of the a's is a square and similarly for the b's and c's. The products of the a's in sides I and IV, respectively, are clearly $[(n - j)!]^{j+1}$ and $[(n + j)!]^{j+1}$ and both are squares since j is odd. Also, the product of the a's in II, III, V, and VI and not in I or IV is clearly

MORE HIDDEN HEXAGON SQUARES

 $[(n - j + 1)!(n - j + 2)! \cdots (n + j - 1)!]^2$.

Similarly, the products of the b's in III and VI, respectively, are $[(r + j)!]^{j+1}$ and $[(r - j)!]^{j+1}$, and the product of the b's in I, II, IV and V and not in III and VI is

$$[(r - j + 1)!(r - j + 2)! \cdots (r + j - 1)!]^2$$

Finally, the products of the c's in II and V, respectively, are $[(n - r - j)!]^{j+1}$ and $[(n - r + j)!]^{j+1}$ and the product of the c's in I,III, IV and VI and not in II and V is

$$[(n - j - r + 1)!(n - j - r + 2)! \cdots (n + j - r - 1)!]^2$$
.

Therefore, the product of the coefficients in question is a rational square and, since the product is a product of integers, it is also an integral square as claimed.

REFERENCE

1. V. E. Hoggatt, Jr., and Walter Hansell, "The Hidden Hexagon Squares," <u>Fibonacci</u> Quarterly, Vol. 9 (1971), pp. 120, 133.

THE BALMER SERIES AND THE FIBONACCI NUMBERS

J. WLODARSKI Proz-Westhoven, Federal Republic of Germany

In 1885, J. J. Balmer discovered that the wave lengths (λ) of four lines in the hydrogen spectrum (now known as "Balmer Series") can be expressed by the multiplication of a numerical constant k = 364.5 nm (1 nm = 1 nanometre = 10^{-9} m) by the simple fractions as follows:

(1)
$$656 = \frac{9}{5} \times 364.5$$

(2) $486 = \frac{4}{3} \times 364.5 = \frac{16}{12} \times 364.5$

(3)
$$434 = \frac{25}{21} \times 364.5$$

(4)
$$410 = \frac{9}{8} \times 364.5 = \frac{36}{32} \times 364.5$$

By extending both fractions, 4/3 and 9/8, be recognized the successive numerators as the squares 3^2 , 4^2 , 5^2 and 6^2 , and the denominators as the square-differences $3^2 - 2^2$, $4^2 - 2^2$, $5^2 - 2^2$, $6^2 - 2^2$.

From this he developed his famous formula: [Continued on page 540.]

526