# A METHOD FOR CONSTRUCTING SINGLY EVEN MAGIC SQUARES 

JEROME ROTHSTEIN
The Ohio State University, Columbus, Ohio

In a recent note* we described a method for constructing magic squares of order $n=2$ $(2 m+1)$ based on systematic alteration of $2 \times 2$ blocks of integers substituted for the integers of any odd square of order $2 \mathrm{~m}+1$. The present note derives a convenient alternative rule starting from a block of four odd squares of order $2 m+1$. Its derivation shows the existence of a very large number of similar rules.

Divide the square of order $n=2(2 m+1)$, with sum

$$
\mathrm{S}_{\mathrm{n}}=\mathrm{n}\left(\mathrm{n}^{2}+1\right) / 2=2 \mathrm{~S}_{2 \mathrm{~m}+1}+3(2 \mathrm{~m}+1)^{3}
$$

into four squares of order $2 m+1$. Label them I, II, III, IV as shown in Fig. 1, filling the cells of I with integers of any magic square of order $2 \mathrm{~m}+1$, filling II with any square of the same order whose integers have each been augmented by $(2 \mathrm{~m}+1)^{2}$, likewise III and IV,


Figure 1
where the augmentations are respectively by $2(2 m+1)^{2}$ and $3(2 m+1)^{2}$, and the unaugmented squares of IV and I are identical, likewise those of II and III. Clearly the column sums each add up to $S_{n}$, and this property is not destroyed by interchanges within a column.

The upper $(2 \mathrm{~m}+1)$ rows sum to $2 \mathrm{~S}_{2 \mathrm{~m}+1}+2(2 \mathrm{~m}+1)^{3}$, while the lower $(2 \mathrm{~m}+1)$ rows sum to $2 \mathrm{~S}_{2 \mathrm{n}+1}+4(2 \mathrm{~m}+1)^{3}$. Exchanges within columns which reduce the lower rows by $(2 \mathrm{~m}+1)^{3}$ and increase the upper rows by the same amount will thus bring the row sum to $\mathrm{S}_{\mathrm{n}}$. If $p$ interchanges are made between I and IV and $q$ between II and III, all of them in the same row, then the upper row increases by $(3 p-q)(2 m+1)^{2}$, the lower row decreasing by the same amount. Any $p$ and $q$ less than $2 m+1$ satisfying $3 p-q=2 m+1$ will bring the row sum to $S_{n}$. For $k$ an integer, positive, zero or negative, and satisfying $-2 m+1 \leq$ $3 \mathrm{k} \leq \mathrm{m}+2$ we have $\mathrm{p}=\mathrm{m}+\mathrm{k}, \mathrm{q}=\mathrm{m}+3 \mathrm{k}-1$ as the possible cases. The case $\mathrm{p}=\mathrm{m}$, $\mathrm{q}=\mathrm{m}-1$ is the simplest.

The two diagonal sums differ by $4(2 \mathrm{~m}+1)^{3}$, or twice the row difference. As the row sum adjustments are independent of which cells in a row are selected for the $p+q$ inter-

[^0]changes, we select them to bring the diagonal sums to $S_{n}$. If $m$ diagonal cells of I interchange with the corresponding (non-diagonal) cells of IV, likewise $m$ diagonal cells of IV with the corresponding (non-diagonal) cells of I, and the center cells of I and IV are also interchanged, then the I-II diagonal increases by $(2 \mathrm{~m}+1) 2(2 \mathrm{~m}+1)^{2}$ and the III-IV diagonal decreases by the same amount, thus bringing them to $S_{n}$. This diagonal correction, which uses only I-IV interchanges, applies only if $\mathrm{p} \geq \mathrm{m}$. Other rules, involving II-III interchanges also, can easily be worked out.

Figure 2 gives a pictorial representation of a simple rule for $p=m$, with I-IV diagonal correction, illustrated for the case $m=2$. The numbers assigned to the empty cells of the squares of order $2 \mathrm{~m}+1$ are left undisturbed. Those assigned to cells with + or - are interchanged with the numbers in the corresponding cells, i.e., the number in cell ( $i, j$ ) of $I$ exchanges with that in cell ( $i, j$ ) of IV, likewise II and III. A - label can be moved anywhere in its row (in its square of order $2 \mathrm{~m}+1$ ) except to a cell on a diagonal. A + label, except for those in the center cells, which are fixed, can be displaced to the other diagonal position in its row as long as the same number of mobile + labels are on the diagonal of the square of order $n$ as off it (these are still on the diagonals of I and IV, of course). It is understood that when a label moves, the corresponding label moves correspondingly. In Fig. 2, it can be seen that a simple rule can be expressed as follows. After I, II, III, IV have been written down, interchange the center elements and the $m$ columns on the left, with the exception of the center cell of one column, between I and IV. Perform the same interchanges between II and III except that diagonal cells are not interchanged.

| + | - |  |  |  |  | - |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | + |  |  |  | - |  |  |  |  |
|  | - | + |  |  |  | - |  |  |  |
| - | + |  |  |  | - |  |  |  |  |
| + | - |  |  |  |  | - |  |  |  |
| + | - |  |  |  |  | - |  |  |  |
| - | + |  |  |  | - |  |  |  |  |
|  | - | + |  |  |  | - |  |  |  |
| - | + |  |  |  | - |  |  |  |  |
| + | - |  |  |  |  | - |  |  |  |

Figure 2


[^0]:    *J. Rothstein, American Math. Monthly, Vol. 67, No. 6, pp. 583-585 (June-July, 1960).

