ON THE NUMBER OF DIVISIONS NEEDED IN FINDING THE GREATEST COMMON DIVISOR

DALE D. SHEA
Student, San Diego State College, San Diego, California

Let n(a,b) and N(a,b) be the number of divisions needed in finding the greatest com-
mon divisor of positive integers a,b using the Euclidean algorithm and the least absolute
value algorithm, respectively. In addition to showing some properties of periodicity of
n(a,b) and Nf(a,b), the paper gives a proof of the following theorems:

Theorem 1. If nfa,b) = k > 1, then a+b 2 fk+3

est sum such that n(a,b) = k is the pair (fk+1’ fk+2)’ where

and the pair (a,b) withthe small-

Theorem 2. If N(a,b) =k > 1, then a+b = X1

sum such that N(a,b) = k is the pair (Xk’ xk+xk_1), where xy =1, x; =2, and X =

X 1 X g
[1], [2].

Since nf{a,b) = n(b,a) we can assume a <bh. To prove the first theorem, let n(a,b) =

and the pair (a,b) with smallest

k = 3, 4, **°. These results may be compared with other results found in

k and assume the k steps in finding (a,b) are

b = qa + 1y

a = q2r1+r2

Tees T e 1%ke2 T Tken

ez = 9 Tkg

If k=1, then r; = 0 so b = qya and the smallest pair (a,b) is (1,1) so

a=f1, b=f2, a+b=f3=2.

Note this case is not included in the theorem. In case k > 1 itis evident the smallest val-
ues of a,b will be obtained for 1T 1 and all the g's = 1 except s which cannot be
1 butis 2. Thus the pairs (rk—l’ rk_z), <o+, (a,b) are (1,2), ---, (fk+1’ fk+2)' Since
a+b = Gy T here T fege
We have

Corollary 1. If a+b < fk+3’ then n(a,b) < k for k > 1.

the theorem is proved.

For b = a+1i, i a fixed positive integer so that b < 2a, the quantities satisfy
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(1) n(a + mi, a + [m + 1]i) = n(a, a + i), m=20,1,2, -

This follows from the remark that if n(a,b) = k, then n(a+b, 2a+b) =k+1, k=1, 2,

3, - --. This is evident since the first division would be (2a +b) = 1(a +b) +a and
n(@, a +b) = nf@, b) = k .

Equation (1) is a consequence since each n is one more than n(i, a + mi) = n(i,a). The

periodicity is evident in the table of values of n(a,b) for a < b <2a. (See Fig. 1.)

a = 1 1
2 12
3 123
4 1223
5 12343
6 122233
7 1233443
8 12242533
9 123234343
10 1223324433
11 12344345543
12 122224253333
13 1233353464443

14 12243432454533
15 123242334435343

Figure 1

n(@,b) for b=a,a+1, -+, 2a - 1.
To prove Theorem 2, assume the steps in finding (a,b) with N(a,b) = k are

b = qga 1

a = Qary * Iy

T3 = Qe 1%k-2 T Tko1

T2 T YTk ’
where

0<r1§;—a, O<r25_-;—r1,"~, 0 <r

Because of the restriction on the remainders, we must have g, g3, -+, g equal to or

greater than 2. But since Zri +r,, . < 3r,-r, i=1, -+, k-1, in each case we ob-

i+l i i+1’
tain the smallest sum a +b with gy = --+ = q = 2 and with g; = 1. For k=1, we

Zxk_l + X o and

This completes the proof of the

have 1 =11 so a =b = 1. Set X, =T . For k > 1, a=x =
+ X +x

i
b=xk+l=xk o1 Then a +b = 2x
theorem.

k© k-1 T Tk
Corollary 2. If a+b <

>
X1 then N(a,b) < k for k > 1.
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Figure 2 exhibits the periodicity for i fixed):

(2) N(a, a + i) = N(a + mi, a + [m + 1]i), 12i=2a/2
and the symmetry:
(3) N(a, a + i) = N(a, 2a - i), 1=ila-1.
a= 1 1
2 2
3 2 2
4 222
5 2332
6 22222
7 233332
8 2232322
9 23233232
10 223323322
11 2333333332
12 22224242222
13 233343343332
14 2233332333322
15 23232333323232
16 223232424232322
17 2333434334343322
18 22234242224243222
19 233333443344333332
20 2232233342433322322
21 23233324333342333232

22 223342334323433243322
23 23334343443344343433332

Figure 2

N(a,b) for b = a+ 1, -+, 2a - 1
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