ON GENERALIZED FIBONACCI QUARTERNIONS

M. N. S. SWAMY

Nova Scotia Technical College, Halifax, Canada

Horadam [1] defined and studied in detail the generalized Fibonacci sequence defined by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}=\mathrm{H}_{\mathrm{n}-1}+\mathrm{H}_{\mathrm{n}-2} \quad(\mathrm{n} \geq 3), \quad \text { with } \quad \mathrm{H}_{1}=\mathrm{p}, \quad \mathrm{H}_{2}=\mathrm{p}+\mathrm{q}, \tag{1}
\end{equation*}
$$

p and q being arbitrary integers. In a later article [2], he defined Fibonacci and generalized Fibonacci quaternions as follows, and established a few relations for these quaternions:

$$
\begin{equation*}
P_{n}=H_{n}+i H_{n+1}+j H_{n+2}+k H_{n+3} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
Q_{n}=F_{n}+i F_{n+1}+j F_{n+2}+k F_{n+3}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1, \quad \mathrm{ij}=-\mathrm{ji}=\mathrm{k}, \quad \mathrm{jk}=-\mathrm{kj}=\mathrm{i}, \quad \mathrm{ki}=-\mathrm{ik}=\mathrm{j}, \tag{4}
\end{equation*}
$$

and F_{n} is the $n^{\text {th }}$ Fibonacci number. He also defined the conjugate quaternion as

$$
\begin{equation*}
\bar{P}_{n}=H_{n}-i H_{n+1}-j H_{n+2}-k H_{n+3} \tag{5}
\end{equation*}
$$

and \bar{Q}_{n} in a similar way.
We shall now establish a few interesting relations for these quaternions. Let R_{n} be the quaternion for the generalized sequence M_{n} defined by

$$
\begin{equation*}
M_{n}=M_{n-1}+M_{n-2} \quad(n \geq 3), \quad \text { with } \quad M_{1}=r, \quad M_{2}=r+s \tag{6}
\end{equation*}
$$

Then from (2) and (5),

$$
\begin{equation*}
\overline{\mathrm{P}}_{\mathrm{n}}=2 \mathrm{H}_{\mathrm{n}}-\mathrm{P}_{\mathrm{n}} \tag{7}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\overline{\mathrm{R}}_{\mathrm{n}}=2 \mathrm{M}_{\mathrm{n}}-\mathrm{R}_{\mathrm{n}} . \tag{8}
\end{equation*}
$$

Hence
(9)

$$
P_{n} \bar{R}_{n}-\bar{P}_{n} R_{n}=2\left(M_{n} P_{n}-H_{n} R_{n}\right)
$$

Similarly, the following results may be obtained:

$$
\begin{gathered}
P_{n} \bar{R}_{n}+\bar{P}_{n} R_{n}=2\left(2 M_{n} P_{n}+2 H_{n} R_{n}-P_{n} R_{n}\right) \\
P_{n} R_{n}-\bar{P}_{n} \bar{R}_{n}=2\left(H_{n} R_{n}-2 H_{n} M_{n}+M_{n} P_{n}\right) \\
P_{n} \bar{R}_{n}+P_{n} \bar{R}_{n}=\bar{R}_{n} P_{n}+\bar{P}_{n} R_{n} \\
P_{n} \bar{R}_{n}-\bar{P}_{n} R_{n}=\bar{R}_{n} P_{n}-R_{n} \bar{P}_{n}=2\left(M_{n} P_{n}-H_{n} R_{n}\right) \\
P_{n} \bar{R}_{n}-\bar{R}_{n} P_{n}=\bar{P}_{n} R_{n}-R_{n} \bar{P}_{n}=R_{n} P_{n}-P_{n} R_{n} .
\end{gathered}
$$

It may also be seen that $P_{n} R_{n} \neq R_{n} P_{n}$ unless $P_{n}=R_{n}$, whereas,

$$
\begin{equation*}
P_{n} \bar{P}_{n}=\bar{P}_{n} P_{n}=2 H_{n} P_{n}-P_{n}^{2} \tag{10}
\end{equation*}
$$

Some of these results have been obtained earlier [3] for P_{n} and Q_{n}, which may be deduced by assuming $r=1$, $s=0$ in which case $M_{n}=F_{n}$ and $R_{n}=Q_{n}$. Now consider

$$
\begin{aligned}
F_{m+1} P_{n+1}+ & F_{m} P_{n} \\
= & \left(F_{m+1} H_{n+1}+F_{m} H_{n}\right)+i\left(F_{m+1} H_{n+2}+F_{m} H_{n+1}\right) \\
& +j\left(F_{m+1} H_{n+3}+F_{m} H_{n+2}\right)+k\left(F_{m+1} H_{n+4}+F_{m} H_{n+3}\right)
\end{aligned}
$$

It is also known [1] that

$$
\begin{equation*}
H_{m+n+1}=F_{m+1} H_{n+1}+F_{m} H_{n}=F_{n+1} H_{m+1}+F_{n} H_{m} \tag{11}
\end{equation*}
$$

Hence we have

$$
\begin{aligned}
\mathrm{F}_{\mathrm{m}+1} P_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{m}} P_{\mathrm{n}} & =H_{m+n+1}+i H_{m+n+2}+j H_{m+n+3}+k H_{m+n+4} \\
& =P_{m+n+1}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
P_{m+n+1}=F_{m+1} P_{n+1}+F_{m} P_{n}=F_{n+1} P_{m+1}+F_{n} P_{m} \tag{12}
\end{equation*}
$$

Also

$$
\begin{equation*}
P_{2 n+1}=F_{n+1} P_{n+1}+F_{n} P_{n} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2 n}=F_{n+1} P_{n}+F_{n} P_{n-1}=F_{n} P_{n+1}+F_{n-1} P_{n} \tag{14}
\end{equation*}
$$

It may also be verified that

$$
\begin{equation*}
P_{n} \bar{P}_{n}=\bar{P}_{n} P_{n}=3(2 p-q) H_{2 n+3}-\left(p^{2}-p q-q^{2}\right) F_{2 n+3} \tag{15}
\end{equation*}
$$

where use has been made of the relation [1]

$$
\begin{equation*}
H_{n+1}=q F_{n}+p F_{n+1} \tag{16}
\end{equation*}
$$

Hence from (15) and (16),

$$
\begin{align*}
P_{n} \bar{P}_{n}=\bar{P}_{n} P_{n} & =3\left(2 p q-q^{2}\right) F_{2 n+2}+\left(p^{2}+q^{2}\right) F_{2 n+3} \\
& =3\left(p^{2} F_{2 n+3}+2 p q F_{2 n+2}+q^{2} F_{2 n+1}\right) . \tag{17}
\end{align*}
$$

Hence
(18)

$$
P_{n} \bar{P}_{n}+P_{n-1} \bar{P}_{n-1}=3\left(p^{2} L_{2 n+2}+2 p q L_{2 n+1}+q^{2} L_{2 n}\right)
$$

Also from (12) we have

$$
P_{n}^{2}+P_{n-1}^{2}=2\left(H_{n} P_{n}+H_{n-1} P_{n-1}\right)-\left(P_{n} \bar{P}_{n}+P_{n-1} \bar{P}_{n-1}\right)
$$

Using (13) and (21) we get

$$
\begin{equation*}
P_{n}^{2}+P_{n-1}^{2}=2 P_{2 n-1}-3\left(p^{2} L_{2 n+2}+2 p q L_{2 n+1}+q^{2} L_{2 n}\right) \tag{19}
\end{equation*}
$$

If $p=1, q=0$ then we have the Fibonacci sequence F_{n} and the corresponding quarternion Q_{n} for which we may write the following results:

$$
\begin{gather*}
Q_{n} \bar{Q}_{n}=\bar{Q}_{n} Q_{n}=3 F_{2 n+3} \tag{20}\\
Q_{n} \bar{Q}_{n}+Q_{n-1} \bar{Q}_{n-1}=3 L_{2 n+2} \tag{21}\\
Q_{n}^{2}+Q_{n-1}^{2}=2 Q_{2 n-1}-3 L_{2 n+2} . \tag{22}
\end{gather*}
$$

Similar results may be obtained for the Lucas numbers and its quarternion by letting $p=1$ and $q=2$ in the various results derived in this article. Also, many other interesting results for these quarternions P_{n} and M_{n} may be obtained.

REFERENCES

1. A. F. Horadam, "A Generalized Fibonacci Sequence, " Amer. Math. Monthly, 68 (1961), pp. 455-459.
2. A. F. Horadam, "Complex Fibonacci Numbers and Fibonacci Quarternions," Amer. Math. Monthly, 70 (1963), pp. 289-291.
3. M. R. Iyer, "A Note on Fibonacci Quarternions," to be published.
