$$
[(n-j+1)!(n-j+2)!\cdots(n+j-1)!]^{2}
$$

Similarly, the products of the b^{\prime} 's in III and VI, respectively, are $[(r+j)!]^{j+1}$ and $[(r-j)!]^{j+1}$, and the product of the b's in I, II, IV and V and not in UI and VI is

$$
[(r-j+1)!(r-j+2)!\cdots(r+j-1)!]^{2} .
$$

Finally, the products of the $c^{\prime} s$ in II and V, respectively, are $[(n-r-j)!]^{j+1}$ and $[(n-r+j)!]^{j+1}$ and the product of the $c^{\prime} s$ in I, III, IV and VI and not in II and V is

$$
[(n-j-r+1)!(n-j-r+2)!\cdots(n+j-r-1)!]^{2} .
$$

Therefore, the product of the coefficients in question is a rational square and, since the product is a product of integers, it is also an integral square as claimed.

REFERENCE

1. V. E. Hoggatt, Jr., and Walter Hansell, "The Hidden Hexagon Squares," Fibonacci Quarterly, Vol. 9 (1971), pp. 120, 133.

THE BALMER SERIES AND THE FIBONACCI NUMBERS

J. WLODARSKI

Proz-Westhoven, Federal Republic of Germany

In 1885 , J. J. Balmer discovered that the wave lengths (λ) of four lines in the hydrogen spectrum (now known as "Balmer Series") can be expressed by the multiplication of a numerical constant $\mathrm{k}=364.5 \mathrm{~nm} \quad\left(1 \mathrm{~nm}=1\right.$ nanometre $\left.=10^{-9} \mathrm{~m}\right)$ by the simple fractions as follows:
(1)

$$
\begin{gather*}
656=\frac{9}{5} \times 364.5 \\
486=\frac{4}{3} \times 364.5=\frac{16}{12} \times 364.5 \\
434=\frac{25}{21} \times 364.5 \\
410=\frac{9}{8} \times 364.5=\frac{36}{32} \times 364.5 . \tag{4}
\end{gather*}
$$

(2)
(3)

By extending both fractions, $4 / 3$ and $9 / 8$, be recognized the successive numerators as the squares $3^{2}, 4^{2}, 5^{2}$ and 6^{2}, and the denominators as the square-differences $3^{2}-2^{2}$, $4^{2}-2^{2}, 5^{2}-2^{2}, 6^{2}-2^{2}$.

From this he developed his famous formula:
[Continued on page 540.]

