to Gardner's three-square problem [5] which has been proven synthetically in 54 ways [6]. Proof of the second value of arccot 1 is asked for in [7].

REFERENCES

1. D. H. Lehmer, Problem Proposal 3801, American Math. Monthly, 43 (Nov., 1936), p. 580.
2. M. A. Heaslet, Problem Solution 3801, American Math. Monthly, 45 (Nov., 1938), pp. 636-637.
3. Verner E. Hoggatt, Jr., and I. D. Ruggles, "A Primer for the Fibonacci Numbers, Part V," The Fibonacci Quarterly, 2 (Feb. , 1964), pp. 59-65.
4. Verner E. Hoggatt, Jr., "Fibonacci Trigonometry," The Mathematical Log, Vol. XIII, No. 2, Dec., 1968, p. 3.
5. Martin Gardner, "Mathematical Games," Scientific American, 222, No. 2 (Feb. , 1970), pp. 112-114; No. 3 (Mar., 1970), pp. 121-125.
6. Charles W. Trigg, "A Three-Square Geometry Problem," Journal of Recreational Math., April, 1971, pp. 90-99.
7. Alfred E. Neuman, Problem Proposal 243, Pi Mu Epsilon Journal, 6 (Fall, 1970), p. 133.

[Continued from page 526.]

$$
\lambda=\mathrm{k} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}-2^{2}} \quad(\mathrm{n}=3,4,5,6)
$$

or in the better known form:

$$
\nu=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{\mathrm{n}^{2}}\right)
$$

where ν is the frequency and R the "Rydberg's constant."
It may be of interest to note that all denominators of the simple fractions used by Balmer for deriving his formula, i.e., 3, 5, 8 and 21, are Fibonacci numbers.

