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The following three-step iteration algorithm to generate x simultaneously in 2x+ 1 =

a2 and 3x + 1 = b? was mentioned, but not proved, in [4, p. 211]:

110-1 =9 9% = 81 (81 -1)/2 = 40 = x;

910 -1 = 89 892 = 7921 (7921 - 1)/2 = 3960 = x,

89-10 - 9 = 881 8812 = 776161 (776161 - 1)/2 = 388080 = xq
881:10 - 89 = 8721 87212 = 76055841 (76055841 - 1)/2 = 38027920 = x,

8721-10 - 881 = 86329 863292 = 7452696241 (7452696241 - 1)/2 3726348120 = x5 .

Proof. From 2x+1 = a% and 3x+1 = b2 comes 3a?-2p2 = 1. If a . b is any

=ba +4b , b = 6a_+ 5b_ is the
n n n+l n n

+an—1 = 1Oa'n’ lon+1 * bn—l -

solution of this generalized Pell equation, then 2041

next larger one. From these, we obtain immediately 241

lObn, which is equivalent to the algorithm.
For the nth term formula we use the usual approach bylinear substitutions (for exam-

ple, [1, p. 181]) and obtain
X = [(NE + 2)(5 + 2:B)" + (NG - 2)(5 - 2\/_6—)11]2/48 - 1/2

This formula has three shortcomings: (1) it uses fractions, (2) it employs roots, and (3} it
has n in the exponent. The algorithm above has none of them.

Similar arguments are valid for a four-step iteration algorithm [3] to generate x in
X+ (x+1)2 =y,

Sometimes, the o term formula may be simple, as for a%+b? + (ab)2 = c?, a and

b consecutive positive integers [2]. Here we have
n-1D2+n*+[(-Dn]* = 0?2 -n + 1%,

and hence we need no algorithm. But for a = 1 an algorithm would be helpful. Let us first

find some clues to such an algorithm. We have by hand and by a table of squares:

2+ 0t 4+ 02 = 12 = (0% + 1)
12 4 22 o+ 22 - 32 — (22 _ 1)2
12+ 122 + 122 = 172 = (4% + 1)?

12 + 702 + 702 = 992 = (10% - 1)2
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The alternating +1 and -1 in the last column, which shows a constant pattern, suggests the
possibility of an algorithm. If we can find all b, say, from bs; = 12 on, we will also have

all c. After some trials and errors, we obtain

Iteration Algorithm 1

6:2 -0 = 12
612 - 2 = 70
6-70 - 12 = 408
6:408 - 70 = 2378
6-2378 - 408 = 13860
613860 - 2378 = 80782
which yields easily the next four results:
12 + 4082 +  408% = 5772 = (242 + 1)2
12 + 23782 + 23782 = 33632 = (58 - 1)2
1% + 138602 + 13860% = 196012 = (1402 + 1)2
1% + 80782% + 807822 = 1142432 = (3382 - 1)% .

Similarly, we approach the case a = 2, We have by hand and a table of squares:

22 + 12+ 22 = 32 = (12 + 2)2
22 + 32 4+ 62 = 72 = (32 - 22
22 + 8% + 162 = 18 = (4% + 2)2
22 + 212 + 422 = 47t = (72 - 2)% .

The alternating +2 and -2 in the last column, which shows a constant pattern, suggests the
possibility of an algorithm. If we can find all b, say, from bs = 8 on, we will also have

all c. After some trials and errors we obtain:

Iteration Algorithm 2
33-1=238
38 -3 =21

321 - 8 = 55

355 - 21 = 144
3-144 - 55 = 377
3-377 - 144 = 987

which yields easily the next four results:



1974] ITERATION ALGORITHMS FOR CERTAIN SUMS OF SQUARES 85

22 + 552 + 1102 = 1232 = (11% + 2)2

2% + 144% + 2882 = 3222 = (182 - 2)?
2% + 3772 + 7542 = 8432 = (292 + 2)2
2% + 9872 + 19742 = 22072 = (47 - 2)? .,

Slightly different behaves the case a = 3. We have by hand and a table of squares:

32+ 02 + 02 = 32 = (0% + 3)2
32+ 22+ 6= 7 = (22 + 3)2
3+ 42+ 122 = 132 = (42 - 3)?
32+ 182 + 542 = 572

32 + 802 + 240 = 2532 = (16% - 3)2
3% + 1542 + 4622 = 487% = (22%2 + 3)2
32 + 6842 + 20522 = 21632

Here the doubly alternating +3 and -3 in the last column would show a constant pattern, if
the exceptional values 572 and 2163% could be eliminated. This suggests the possibility of
two algorithms. To obtain further results, we write an Integer-FORTRAN program for the
IBM 1130 which yields

32 + 30382 + 9114% = 96072 = (982 + 3)2
32 + 58482 + 175442 = 184932 = (1362 - 3)?
3% +  25974% + 779222 = 821372

32 + 115364% + 3460922 =  364813% = (604% - 3)2
32 + 2220702 + 6662102 = 702247 = (838% + 3)2
32 + 986328% + 29589842 = 3119043?

32 + 43807942 + 131423822 = 13853287 = (3722% + 3)% .

Now we want to find an algorithm which should generate the sequence 80, 154, 3038, 5848,
115364, 222070, 4380794, - --. Let the terms by = 0, by = 2, and by = 4 be given; then
by = -4 is the left neighbor of b, = 0, since 32+ (-4)% +(-12)? = 132 = (4% - 3)? is the

logical extension to the left. With this trick and some trials and errors, we obtain

Iteration Algorithm 3

382 - (-4) = 80
280 - 204 + 2 = 154
3880 - 2 = 3038
2-3038 - 2154 + 80 = 5848
383038 - 80 = 115364
2°115364 - 2°5848 + 3038 = 222070
38:115364 - 3038 = 4380794
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Now there remains only to find an algorithm which should generate 25974, 986328, - --. Here
we have not far to go, since such an algorithm is already contained in the former one, and
we obtain easily

Iteration Algorithm 4
38-684 - 18 = 25974

38:25974 - 684 = 986328

Finally, one could ask: Does there exist a general formula for solving x% + y% + z = w2?
The answer is yes. Let x = p?+q*-r%, y = 2pr, z = 2qr, and w = p? +q?+r?; then
x2+y2+z2 = w2 becomes 0 = 0. But this formula has two shortcomings: (1) it uses frac-
tions, and (2) it employs roots, since, for example, the solution of 3% + 22 + 62 = 72 requires

p = ~NZ/2, q =3~2/2, and T = V2.
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