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PART 1. INTRODUCTION

As harmless as it may appear, the Fibonacci sequence has provoked a remarkable
amount of research. It seems that there is no end to the results that may be derived from
the basic definition

Fn+2 = Fn+1+Fn and Fo = 0 and F, = 1,
which Leonardo of Pisa found lurking in the simple rabbit problem. For example, an exten-
sion of the definition yields the so-called Lucas numbers:

Ln+2 = Ln+l + Ln and Lo = 2 and L1 = 1.
Evidently, any two integers may be used 'to start' the sequence. However, it is well known
that there is an extraordinary relationship between the Fibonacci and Lucas sequences. In
particular:
FZn = FnLn and Fn+1 + Fn-l = Ln'
Precisely where does this peculiarity arise?
Then, again, many remarkable summation formulae are available. In particular, the

nth partial sum of the Fibonacci sequence is expressed by Fn+ - 1. The method used gen—

2
erally for proving such formulae is inducticn on the index. This involves
1. a guess provoked by the investigation of individual cases,

2. an efficient formulation of the guess, and

3. a proof by finite induction.

The drawbacks to this method are obvious. First, it depends very heavily on insight and
cleverness, which qualities, while being desirable in any mathematician, do not lead to re-
sults very quickly. Second, this method is entirely inadequate for cases involving bulky for-
mulations, and, of course, many times a result suggested by individual observation does not
immediately come in convenient form. Finally, such a method is unable.to relate and gener-
alize results. Mathematics is incomplete until the specific, and perhaps surprising, facts
are brought back to a generalization from which they maybe deduced. Not only does this give
a foundation to the conclusions themselves, but it enables one to draw further, unsuspected
conclusions, which are beyond inductive methods. Furthermore, as a result of a generalized

deduction, the formulation will be more elegant and notationally consistent.

11
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What is required then, is a generalization of the Fibonacci sequence, discarding the
incidental. At points this project will appear to be unnecessarily removed from the simplic-
ities of the original sequence, but attempts will be made to show the connections between the

more general case and the more familiar results.

DEFINITIONS

The Fibonacci sequence is based on an additive relationship between any term and the
two preceding terms. In our generalization, it is necessary to exploit two aspects of this re-
lationship: we shall make it a linear dependence, and it will involve the preceding p terms.

Here, and throughout, f will note the general additive sequence:

(1) f =

n+p 2 f

n+p-1 + azfn+p_2 + o +apfn mh=20,1,2, ).

It seems essential to the spirit of these sequences that they be integral. To insure this, we

must demand that the set

1

be integers. This set will be called the spectrum. But, returning to (1) and letting n = 0:

P
2) fp = E akfp-k ,
k=1

reveals that we must specify the first p terms of the sequence in order that the others may

be obtained. The set of integers

{51
0

so specified will be called the initial set, or the initials.

It might be mentioned here that the Fibonacci sequence is obtained byletting p = 2 and
taking the spectrum {1,1} and the initials {0,1}. And the Lucas sequence has p = 2,
spectrum {1,1} and initials {2, 1}.

We wish now to extend the definition (1) so that negative values for the index are allowed.

Using the ""back-up' approach, we obtain

fp_1 = alfp_z + +ap_1f0 + apf_l ,
or
p-1
f = f - a f
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Continuing, it can be seen that, for any n = 0, 1, 2, ---

p-1
3) T Z a,
-n a p-n k p-n-k
p k=1

Clearly, in order to maintain an integral sequence for all values of the index, positive and

negative, it is necessary to take ap = +1. In any case, we have that a? = 1.

UNARY SEQUENCES (p = 1)

The number p of necessary initial values classifies the sequence as unary, binary,
tertiary, and so on. The analysis of the unary sequences is rather trivial. The spectruin is
{ai} and the initial set {fo}. But since p = 1, we musthave a; = %1, so that (1) comes
down to:

or, immediately:

_ n+1
fn+1 = (&1) f

0
In addition, it would seem altogether desirable to eliminate those sequences which can be
"reduced' bydividing eachterm by a constant. That would leave onlythe primitive sequences
for which if d divides fk for each value of k, then d = 1. In addition, we eliminate those
trivial sequences with each term zero. These conditions are met by demanding that neither
the spectrum nor the initial set be all zero, and that no constant be divisible into all the spec—

trum or initial set. With these restrictions, we see that the unary sequences become:

fk =1, forall k, or

_ k
fk - ("1) .
This simply ends all discussion of unary sequences.

ALGEBRAIC GENERATORS

One of the most common manifestations of additive recursive sequences is the power
series expansion of certain functions. For example, a short calculation leads one to con-
clude that:

The actual derivation of this result stems directly from the definition of the Fibonacci se-

quence. In what follows, we will use the same derivation in a generalized form. What we
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want to discover is an expression for:

@ D gx = 0w,

k=0
where, by (1):
P
fn+p - Zak fn+p—k
k=1
Now, we multiply (1) by xn+p, and sum over the index n, so that:
00 p K o0
P n+p—k
E :n+p E:akx E ;fn+pk
n=0 k=1 n=0

But, taking into account (4), we may rearrange this expression, and:

P . p-1
CIEED DL EERDDES Zlk—
k=1 k=1

This singularly awkward expression can be made manageable by making the somewhat
arbitrary definition of a; = -1. The introduction of a, greatly simplifies the formulation of

the required function:

7
oy

(5) d(x) = o fb 1E

We need hardly say that this is the required expression, which reduces to the familiar Fib-
onacci power series when p = 2, a; =a; = 1, and f, = 0, f; = 1. But, further investi-
gation of (5) leads to considerations which will be of crucial importance later. First, we re-
mark that the denominator is a pth-degree polynomial:

-3y +oayx +oagxt + ... p @ = -1 ,

apx )

which will be called the spectral polynomial.

Then, with regard to the numerator, the following definition will be made:

(6) hm,k = . E ajfm+k—j for 0 <k<Lp.



1974] LINEARLY RECURSIVE SEQUENCES OF INTEGERS 15

In other words, hm K is a partial sum of terms. For example:
H

m, 0 0'm m

and, for convenience:
(7) h, =nh =f -a,f - e —-a, f

The introduction of (7) into (5) yields the remarkably concise:

p_l k
00 . - kzz:o th
(5") dx) = f X T e— |
Z k P K
k=0 go 2, X

THE Q-SEQUENCE

In any f-sequence, it is possible to choose the initial set as any set of p consecutive
terms, so that two ''different" sequences may actually differ only in their indices. It seems
then necessary to consider some sort of fundamental sequence. This fundamental sequence
has the simplest non-trivial initial set; namely {0, 0, ---, 0, 1}. The Fibonacci sequence
is a binary case. These sequences exist for all values of p, and they will be called Q-

sequences. Referring to (6), we will rename the partial sums hm Kk*

B

k

(8) Hm,k = - E anm+k—j for 0=k=1p,
=0

and, from (7):
k
He = Hok = '2 :ank—j ’
=0

but, from the definition of Q-sequences, Qk =0 for 0 =k =p-2, and Qp 1° 1:

Hk=0, for 0 =k =p - 2, or k=p,

Using these results in (5'), we have:
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p-1 Kk
0 - Z: H, x o1
k k=0 _ X
(9) Qkx - -
IS PN
k=0 a, X - a, X
k=0 k k=0 k

The right-hand member of (9) may be treated as a geometric series:

o p
%P1 _ .p-1 E : K\Kt
—————— = X a, X )
> oy ‘
1 - a, X k=0 k=0
k=1 k

and successive binomial expansions of the polynomial in parenthesis gives:

af < K\ Y N kyoky K\
<P Z Z(akx ) = xP Z Z (k;)(aix) 1 ZZ(akx >
k=2

p
;=0 k=0 k;=0 k=0

m+p-1

and so on. After p steps, we may collect coefficients of x in (9) and equate them,

obtaining:

k k. k. k k -k k
(10) Q = E ! 2 L T p-1 akl"kz ak2‘k3 ... a p-1 P, P
m+.p—1 kz k3 k4 k 1 2 p—l P ’

p

where the sum is taken over all {ki} such that

p
Ek.=m,
1

i=1

and m +p - 12 0. Looking at the binary case (p = 2), we discover that

where

(n)=0 for 0 <n<k, and n+1 20
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so that, for a; = a;, = 1:

271

i=0

which, of course, is the well-known "rising diagonal" result for Fibonacci numbers, derived

from Pascal's triangle. And, for comparison, here is the ternary case:

_ - i -\ /i\ n-2i-j i-j i
S YN ) et

i,]

Remark. In this section, and throughout the rest, we choose to make the agreement
that (E) =0 forall 0< n< k. This appears a bit arbitrary, but it is used since it sim-
plifies the summation notation. Notice that the upper index on the summation may be taken
as infinity, since by our agreement the binomial coefficients vanish for large enough k. It
might be pointed out that the real upper index, for example, in (11) is [[.n/z]], that is, the
greatest integer in n/2. The bulky notation required for (10) in particular in this form war-

rants using our more simplified method.

THE Q-SEQUENCE AS BASIS

The fundamental nature of the Q-sequence is clearly shown in the following argument.

We return to (5'), and rearrange slightly:

b3}
0 - h x p-1
Zf k _ k=0 5 =t
K* i £ k p K ’
k=0 a, x =0 kz: a, X
= K = K

then, taking into account (9), we have:

%) p-1 )
k _ 2 : k-p+1 E : i
E fk X = hk X Qi X
k=0 k=0 i=0

m-p+1

Comparing the coefficients of x in this expression, we find that:

(13) fm—p+1 - z :thm—k !
k=0
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This clearly shows the basic nature of the Q-sequence — it forms a basis set for any other
sequence having the same spectrum. But a more useful formulation may be derived by con-

sidering (7), and substituting into (13):

p-1 k

mp+l_ Z:E:Jk]mk’

k=0 j=0

(14)

and then, using (8):

=

'Zanm-p+1+k_j = Hy o1,k

we have, from (14):
(1s) fm-p+1 = z :Hm—p+1,k fp—k—l ’
k=0

and finally, an obvious adjustment of index leaves us with:
p-1
(16) £, = E Hm,k fp-l-k where Hm,k is given by (8) .

k=0

Remark. For certain values of k, an alternative form of (8) is desirable:

k p k
Hok = Qmak _Zaj Qnk-j = Zanm+k-j ‘Zaj QUnk-j
=1 =1 =1

or

p-k
an Hm,k - E:akﬁQm-j
=1

THE H-SEQUENCE

What appeared in (8) to be merely notational convenience can now show more positive
results. For example, a linear combination of p consecutive Hm g over the m index (in

the spirit of (1)):
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p p k
§ :ame—j,k = 'E :ajE :aiQm-jH{—i
=1 =1 i=0
k p
18 = _2
(18) 2 2, % Vmokoioj
':0 ':1

I J

k
_ZaiQmﬂ{—i - Hm,k
i=0

shows that Hm Kk is itself an f-sequence for any choice of k. In fact, for k = 0, the H-

sequence reduces to the @-sequence due to:

But, for any choice of k, we must have in general, that H-sequences satisfy (16), since they

are f-sequences:
p-1

(19) LI DS S A
j=0

which is a remarkable formula suggestive of a whole series of important results.

PART 2. MATRIX REPRESENTATIONS

A great many of the familiar Lucas and Fibonacci identities have been shown to be re-
lated to the properties of matrices. The attempt to generalize these results for higher or-
ders of sequence directly leads to various sorts of results depending largely on the aspect

taken for generalization. But our previous work has led up to the following formulae:

k

(8) Hm,k = - E anm+k—j for 0 < k<p
and j=0

p-1
(19) Hm,k = ZHm,ij—'l—j,k
as well as j=0

p-1
(16) fm = 2 :Hm,kfp-l-k

k=0

These three equations are strongly suggestive of matrix multiplication, particularly the last
(16). In fact, if the following definitions are made, a singularly simple formulation may be

given:
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m Hm+p-1,0"‘ Hm+p-1,p-l
(20) Y = : : ;
Hm,O Hm,p-l
Then:
Ho1,077 Hpo1,p-1
H = : = I, the identity,
H H
and 0,0 0,p-1
ay A ap-1 8p
1 0 o 0
0 1 0 0
1 = =
=i 0 0 0 0
0 0 1 0

A glance at (19) shows that the matrix H is really multiplicative; that is:

+
HmHn _ Em n

since (19) is merely a statement of such a multiplication, row by column. Here again, what
began in (8) as mere convenience, is seen to have something of a fundamental character with

regard to the recursive sequences. Now, in addition, let us define:

fm+p—1
° fm+p-2
@ Ep =)
fm+1
f
m

Finally, then, it is evident that (16) may be written in the matrix form:

. G
A particularly useful remark may be inserted here:
m
(23) det H" = (det H)™ = (ap pPH™

This can be seen by congidering definitions (20). However, in order to maintain a sequence
which has integers for all values of the index we need ap = +1, as was seen in (3). Hence,
for any value of m, det Em = #1.

Also, the harmless observation that Em _I_{_n = Em+n, when compared entry for entry

leads to the remarkable:

p

Z Hm+p—k, j-1 Hn+p—i, k-1 Hm+n+p—i, j-1

(24)
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which is actually a generalization of (19).

In particular, by taking i = p and j = 1 in (24), and recalling that Hm 0= Qm in

(8), and then rearranging index in (24):

7
L

25) Hn,ka+p-k—l - Qm+n ’

=
Il
(=]

GENERAL REDUCTIONS

Rather than considering column matrices of fk’ we now extend the treatment to the

square matrix, having columns given by (21):

fm+2p—1 o fm+p-1

f e f
(26) m+_2p—2 m+.p—2 B
_—-m .
fm+p-1 e fm

Then (22) becomes an expression involving p X p matrices:

m —
E EO - Em
where:
f2p_1 - fp_]_
= 2
Lo ; ;
fp—l o f0

Taking determinants, and simplifying, using (23):

det ¥, = det H det F
~m = =

0
@27 _ p-1m
= (ap(—l) ) det EO
or:
det_]_?ml = |det EOI for any m .

Clearly, the number det F; is an extraordinary constant for any sequence which depends on
the initial set { fi}g)—l, and which will be called the characteristic.

The characteristic of the Fibonacci sequence is

while that of the Lucas sequence is



22 LINEARLY RECURSIVE SEQUENCES OF INTEGERS [Feb.

3 1
| 1 2|7 °%
as is well known.
Again, the simple remark that:
_ m+n |
Em+n H EO | -}E.n
plus, a comparison of entries, gives:
p-1
(28) fm+n = Z Hm,kfn+p—1-k
=0

which is the general reduction. It is a generalization of (16).

EXAMPLES
The binary case, of course, yields the most familiar results:

Qm aZQm-l

so that:

=& 2 = _
H <1 0> and det H a,

From (27) in the binary case:

2 = m 2
(30) fm+2 fm - fm+1 (—az ) (f2 fo - fl)

so that, for the Q-sequence:

] - m
Quag Qp - Pag = )1
or
_ m-1
(31) Q@ - Qi Qy g = (22)

and the binary reduction becomes, referring to (28):

= f

(32) Qpf * aZQm—lfn m+n

m n+l

The correspondence with the usual Fibonacci results may be worked out in detail directly
from these identities.

Now, turning our attention to the ternary case (p = 3), we discover several important

points. First, the elegant formulations of the binary case do not hold up for p = 3, or for

higher cases. Also, symmetry of expression begins to fade with the higher sequences.
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Clearly, most of the interesting properties of the Fibonacci sequence stem from its being a
binary sequence, while a few come from its being a sequence in general. We will here give
the ternary results:

- . Qnig 24y * 239 25Qp 41
3 =
3 H Qm+1 aZQm * a?,Qm—l a3Qm—1

* a3Qm—2 aSQm—Z

ay a9 ag
H=(1 0o o
0 1 0

and

so that: det H = a3 hence:

fmta  Tmes Imeo | m Lo
(34) fm+3 fm+z fm+1 = (ag ) f3 fz fl
PR S £, £ £

For @-sequences in the ternary case:

Q
(35) Q

Q
Q

Qm+2 Qm+1 Qm

m-+4 m+3 Qm+2

Q = —(33)m -

m+3 m+2 m+1

And the ternary reduction:

= f

(36) Quinte © Qi1 — 21900 ¥ 239y 15 = fhin

NEGATIVE INDEX

Already, we have investigated the nature of the general sequence for negative values of
the index. A necessary and sufficient condition that a sequence be primitive and integral is
that a; = 1. Now, using more recent results, it is possible to look into the matter a bit
more deeply, and obtain expressions relating terms of negative index with those of positive
index.

Were the matrix equation E_m Fo=F, to hold for negative value of the index:

-1
EFm=H Ey,=EY) E,,
or, in particular:

(37) = @™,

so that, after the indicated inversion, we may equate the entries in (37):
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(38) H =1 minor H
m

-m-+p-i, j-1 det H m+p-j,i-1 °

Then, letting j = 1, and recalling (8):

= Q =—1—— minor H

H—m+p—i, 0 -m-+p-i det H

m+p-1,i-1

and, then, letting i = p, we have, after reference to (23):

(39) Q = (ap(_l)p-i-l)‘m minor H

-m m+p-1,p-1

Then, for the general case, we need only note that from (16):

p-1
1 =
(169 SR DL I
k=0
where:
k
(8" Homk = z :aj Q-
=0

As a footnote, we add two identities coming from the equation _Iimkl__m = Ip, where entries

are compared, after completing the multiplication on the left member:

p

(40) ZHm+p—k,j—1H-m+p_i,k_1 = Ho i = 6y
k=1

for 0 =1 =p, 0=j=p and 0 =k = p, and where Sij is Kronecker's delta.
If i=p and j = 1 in (40):
p
Eﬂmﬂp-k,OH-m,k—l = Hyo >

k=1

which may be rewritten:

i
[y

(41) Q

m+p-k-1"-m,k

T
==
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Applying (39) to the binary case yields the intriguing result:

(42) Q. = -(-82)77Q or that: lQ_| = iQmI, for p = 2,

while in the ternary case:

(43) Q= @)@ L - QR ). for p o= 3.

m m+1 m+2

Clearly, the beauty of the expression for p = 2 does not carry over to the situations for

greater values of p.

MATRIX SEQUENCES

An obvious, but interesting result of (26) is the matrix expression (using entrywise
addition):

D
(44) Z :akEm—k - Em
k=1

From (1), it is evident that the matrices { Fk} form an f-sequence with spectrum {ak}p.
- 1

Furthermore, (44) may be written, using the definition of Em:

p P )

_ mek LMo
E:ak—b:mnk - E T Ey = B
k=1 k=1

however, F, # 0, so that, dividing it out:

p
m-k _
(45) S e 5 =0,
k=0

in which case the powers of the matrix H form an f-sequence. In fact, (45) is really a re-

sult of the Cayley-Hamilton Theorem.

ROOTS OF THE, SPECTRAL POLYNOMIAL

Returning to the earlier question of explicit determination of fm and Qm’ we recall
that (10) was obtained, which expressed Qm in terms of a sum of binomial coefficients. A
different approach now will yield the so-called Binet form, which may then be compared with

(10) for a series of remarkable relationships. But first we return to (58'):



26 LINEARLY RECURSIVE SEQUENCES OF INTEGERS [Feb.
p-1 Kk
0 P h, x
2 T
P
=0 - kz: a xk
=0

recalling that the spectral polynomial appears in the denominator. Now consider that this

polynomial has been factored in the complex field:

p
(46) i Zakx = H 1 - rix) ,
k=0

where the roots are {l/ri }pﬂ a set of complex numbers, none of which are zero. Now, let
1

us make the very strong assumption that the roots are distinct, so that:

p-1
0 Ehk p

(47 Ekak = pk— Z T-r.x ;X ’

k=0 m I - T x) i=1
i=1

where the right-hand member is a sum of partial fractions. What is needed is an expression

for each Ai' Using a geometric series and (47):

0 p ]

E £ E A, S‘r ]
kX i X ’

k=0 i=1 =0

and, equating coefficients of xk

. k
48 f = A r,
(48) . 2 AT

Then, from (5') and (46):
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and so, cancelling the term (1 - rkx), after introducing (47):

AT (l—rx)-th
o1 7k

Now, we substitute T, (n=1, 2, .-, p) for 1/x, and recall that the {ri} are distinct:

A i;[n(l __) Zh W)

n

so that, finally:

(49) ) A =

which is exactly the expression for the An demanded for (47), and (48). In fact, now we
may introduce into (48) the value for Aj derived from (49):

p p-1 m+p 1-k
=2 Dy ———
=1 k=0 I (r, - i)
i#]
or:
p-1 p rm+p-1-k

(50) £ =Eth—J———————

k=0 =1 I (r, - ri)
ifH I

However, comparing (50) with (13) and rearranging index shows that:
b rj

(51) Qm = E —— >
=1 1 .

where, of course, the r; are assumed to be distinct. This expression (51) is the general
Binet-form for the Q-sequences.
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Remark. We note that, at the opposite extreme, the assumption might have been made

that r,=r for all i, so that all the spectral polynomial roots are equal:

D
(52) —Z akxk =1 - P,
k=

(=

in which case (5') becomes:

p-1 Kk

Zw k gohkx
(53) ka = —_—
1 - rx)p

and a geometric expansion, and comparizon of coefficients of 2 gives:
p-1
(54) £ = (m+p' 1'J>h.rm'3

and, again, comparing this expression with (13) gives that:

(55) Q, = (p Ifl 1>rm—p+1

EXAMPLES

In the binary case, many of the above results produce elegant formulae. Hence, if in
(51) the roots are 1/r; # 1/r; and 1 - a;x - a,x% = (1 - 1;x)(1 - 1p%), then:

m m m m
T T2 p -T
= -+ =
(56) Q ry - Iy ry - Iy ry - Iy ’
where ry +r; = a; and ryr; = -a,.

In the case that r; = r, = r, we have 2r = a; and r? = -a,, so that there are two
cases: 1) r =+1, a; =2 and ay =-1, and 2) r =-1, a; = -2 and a; = 1. And, in
either case:

- [(m) m-1 _ m-1
(57) Qm = (1>r mr ,
where:
Qu+z = 2941 - Uy

Evidently, by factoring and dividing in (56), and then allowing r; to approach r;:
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m-1
-1- k -
Qm=E rinlkr2=mrmlif ry =1y,

k=0

hence, all three cases may be said to be derived from (56).

Now, foregoing the tedious calculation, we give the ternary results (p = 3):

m m m
ry Ty T3

68) B Y TR B oy | om 2y B omm oy [ ey M

where

1-ax-ax? -2 = (1 - rx)@ - 1px)(1 - 13%) .

If two roots are equal, then ry = ry say, and:

m m m-1
ry - Iy mry
(59) Q = - H
m
(t; - )2 1y -1
where
1-a;x - 2% - a3’ = (1 - rx) (1 - 1p%)?

And, if vy = ry = r3 = r, then:

(60) Q, = imm - re-2

where

Qm+3 = 31‘Qm+2 - 3Qm+1 + er and r = +1 or -1 .

Once again, although now there are an infinite number of cases depending on the nature of the

roots, it can be seen that (59) and (60) can be derived from (58) directly, using in part the

identity:

m m m m-1
ry - Iy _ _ mry
——2=Er{nkr§2(k-1)+———.
(ry - 13) =2 ry - I,

In summary, then, we can, with minor adjustments in view of multiple roots of the spectral
polynomial, consider that the form (51) actually is the expression for Qm in terms of the
roots of the spectral polynomial. On the other hand, (10) expresses Qm in terms of the co-
efficients of the spectral polynomial. That this isa source of a multitude of fascinating prob-

lems is left to the imagination of the reader, as well as to his leisure.
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PART 3. SYMMETRIC FUNCTIONS

By attacking the entire problem from another point of view, it will be possible to derive
a generalization of the Lucas sequence, and thence derive a set of remarkable identities in-
volved with this generalization similar to the usual Fibonacci-Lucas result that FnLn = F2n'
Consider, first, a set of complex numbers {ri }11{, and a defining relation:

k

k
(61) I (x-r) = 1is, K1

The coefficients Si are clearly the elementary symmetric functions of {rj } In particular:

Sy = 1, in any case,
Sy = rgtrptrgt et
(62) Sp = ryrp ryrg eee

S = rirry--cr,  and

S =0, for n >k

n
By substituting L. into (61):
k
rk _ 2 :(—1)1_18. rk—l
m i'm
i=1
R n-k
or, after multiplying by roo
k
n _ i-1 n-i
(63) roo= E (GO VR 5
i=1

Suppose that tn is any linear combination of the {r?}, so that from (63), it is clear that:
k
_ E : i-1
b = 1778t
i=1

In which case, if we further define a, = (-l)i-lsi, we have (letting k = p):



1974] LINEARLY RECURSIVE SEQUENCES OF INTEGERS 31
P

6 =

(64) tn E a; tn-i .
i=1

Hence, from (1), a sequence of linear combinations of nth powers of r. is actually an f-
sequence. Further, the Q-sequence defined by (51) is a specific case of linear combination.
It seems reasonable to investigate the properties of the simplest t-sequence, namely,

the simplest linear combination of nth powers of rj, which will be called a T-sequence:

p
_ n
(65) Tn = E rj

=1

in which case:
Ty = p
Tl = al

TZ = a4 + 23.2 ’

and, in general,
(66) ) Tk = alTk-l + asz_z + oo+ ak-lTl + kak for kK <p.

Remark. Since a; = (-1)1—1Si, then, in particular, a; = -1, as was defined earlier.
In addition, it must be remarked that the 2y defined just before (64) must be integers, in
keeping with the definitions made in the first part of this paper guaranteeing that the
f-sequences be sequences of integers.

From (7) and (66), it canbe seen that h0 k= —ak(p - k) for k < p for any T-sequence.

’

Immediately, (5') becomes

p-1 k
0 > 2, (p - k)x
67) E T, < = &
P k
k=0 a, X
&

p
P
k
k=0
00
(68) ZTkxk =p-x-s(x)/sx.

k=0



32 LINEARLY RECURSIVE SEQUENCES OF INTEGERS [Feb.

Already, from (9):

0
E Qkxk = xp"l/s(x)
k=0
so that clearly, we have:
00 o0
d kY _ p-1 k
(69) s(x) = XE QX = x E T, x
k=0 k=0

in the derivation of which, a bit of the tedious rearrangement has been passed over.

In addition, noting again that h0 = —ak(p - k) and substituting into (13):

by

p-1
el = -Zak (- kQ,
k=0

It

p p
- pz 2 Qi * Z 2 kQ i
k=0 =0

but the first term on the right is exactly zero by (1); so:

p
Tm-p+1 - 2 :kak‘Qm—k
k=0

or:

b
(70) Th = 2 :kaka+p—1—k
k=1

Inspecting (70) and looking at various cases leads to the remark that, in fact, (70) is exactly

+F  =TF +2F
m m m

1 which is a familiar Fibonacci-

the generalization of Lm =F

m+1 -1’

Lucas identity.

EXAMPLES

What follows now is a rather long discussion of the binary case for T-sequences. The
most fascinating results occur when p = 2, sothat a presentation of this situation is reward-

ing. First, in the binary case:

n n :
T, = 1 + 1y, where r?—t-airi—az=0,1=1,2;
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or, if ry =ry =r:

(71) T =2r"

In either case:

n n
T = - n n
Qly = r, - T (ry + 1)
2n 2n
Ty -1
T 1,
so that:
(72) QnTn - QZn ’
Then, from (70):
Tn = alQm + ZaZQm_l
or:
(73) Tn = Qm+l + asz_l

The symmetry of (72) and (73) reveals the underlying charm of the Lucas sequence, which,

of course, carries over to any binary T-sequence. Continuing, using (73) and (42):

T-m - Q—m+1 N aZQ—m—l
_ -m+1 -m-1
= —(-ay) Qm~1 - ay(-ay) Qm—l—l
_ ~-m
= (-a,) (32 Q17 Qm+1)
_ -m
= (-ap) Tm
or, as in (42):
(74) Pt l = lT E .
l -m m
Applying (73), we have:
- 2
(75) T tagT, = Q, (aj + 4ay)
while the characteristic expression (27) is:
- m, 2
(76) Tm+2 Tm - Tin+1 = (—~3.2) (al + 432)

But the general reduction (28) provides the most elegant formulae, both for Q- and
T-sequences:

(77) Qn Toer * 299 1Ty = Trpan

Qan+1 * aZQm—lQm = Qm+n i

and, taking (74) into account:

(-a)Q, . T -Q T )

m+ln m n+l
)

(-a2) 7" @4 ], - Q@

m ‘n+l

3
l

(78) m-n
Q

m-n

It
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so that, adding (77) and (78):

n
T ¥ (-a;) Tm
Q

It

T T
-n n m
(79)

+ (2)" Qu-n = TnhOm

m-+n
or, subtracting:
n — 2
T jn - (-a4) Ton = (aj + 4ay) cf. (75)
(80)

n _
Qpin ~ (-a,) Qyn = QTy

and rearranging index in (79) and (80):

Q@ = Ty - (2)" 5T, ) /ad + 4ay)
Qn+an—k = Q2n * (_az)n_szk
o T (_az)n—szk
Tk Tnok = Ton * (_az)n_kTZK
and, finally:
T _ T2
(82) Qpn Qi = Qi = g = H

[Feb.

Remark. The ternary and higher cases yield no such results; that is, the symmetry

and conciseness do not carry over for p = 2. Then, it is clear, the Lucas-Fibonacci rela-

tionship is based almost entirely on the character of the two sequences as binary sequences.

PART 4. FINITE SUMS

A number of Fibonacci identities are concerned with the formulation in terms of the

Fibonacci sequence of the sum of a certain series of terms of the sequence. For example,

the simplest case:

We now seek to generalize this result. Recalling earlier definitions and theorems:

p
(1) fm+p = E 2y fm+p—k
k=1

) hm,k = _Zaj fm+k-j
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and we define: a; = -1 and h(),k = hk’ so that:

p-1
o0 - Z h xk
K =0 K
(5") E ka = ——
P k

But the initial set {fi}p_l may be chosen arbitrarily, so it is possible to choose for initials
0

the set {fm+i} where i =0, 1, 2, -+, p= 1. In that case, (5') becomes:

p"l k
00 - Z hm,kx
(83) f o k=0 T
“mtk p k
k=0 X
L K
and rearranging the left member:
p-1
k
0 - Z h
2 :f k-m _ k=0 m, k
X =
o ~ o xk
=m a_x
&0
or, multiplying by P
Rl m-+k
© - hm kX
k _ k=0 ’
(84) E f x =
= f: k
=m a X
k=0 k
Then, by a simple substitution:
p-1 h Ltk
o -
Zf k _ k=0 ME
X F oee—
=i zp: k
=n a, X
=k

and, subtracting these two expressions:
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m, k

p-1 n
n-1 kz=:0 by X = By X)X

(85) Z B xS = 5

Letting x = 1, and assuming that Eak # 0:

p-1
kz:=0 (hn,k - hm,k)

n-1
(86) Z B, =

p
k=m a

Remark. Evidently, the sum in the left member of (86) is finite, so that in the case
that Zak = 0, the numerator on the right must be divisible by the denominator.

In the event that p = 2, we have the simpler expression:

n-1

k -1 +a + a
k=n
and
n-1
. Q. +a,Q -1
(88) Qk _ _n 2 'n-1
z : a; +ay; -1
k=1

which reduces to the Fibonacci expression when a; = a3 = 1.

SUMMARY

At the outset, it was proposed to find a generalization from which all the familiar re-
sults for Fibonacci-Lucas sequences might be deduced, in addition to which a consistent no-
tation might be developed, and finally, that the sources of the peculiarity of the Fibonacci-
Lucas sequences might be found. It is hoped that such proposals are worked out inthe course
of the paper. All that remains to be said concerns the sources of peculiarity which is the
bulk of the charm surrounding the Fibonacci-Lucas sequences. Of course, sore of these
properties stem from the very nature of a recursive sequence of integers (such as (5) and
(27)); while other properties stem from the Q-sequence in particular (for example, (10) and
(51)); while others still come from those formulae which assume different forms when a; =

a;, = 1. Actually, it is quite extraordinaryhow many of the properties of the Fibonacci-Lucas
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sequences are shared by a larger class of sequences.
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