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INTRODUCTION 

Stufe of a field is connected with the property of integer - 1 in that field. It is defined 
to be the leas t integer s such that - 1 = a\ + a2 + • • • + a^, where each a, belongs to the 
field. In [2] Chowla and Chowla have determined the stufe of a cyclotomic field. Pfister 
has shown in [3] that the stufe of a finite field is ^ 2 . Our aim is to elaborate this resul t 
further. We do this in the following theorem. 

Theorem. Stufe of GF(p ), where p is prime and n ^ 1, is always one except for 
the case when n is odd and p = 3 (mod 4), in which case its value is two. 

Proof. We know that the non-zero elements of GF(p ), denoted by GF*(p ), form a 
cyclic multiplicative group. Also, it is well known that if G is a cyclic group of order k 
and m divides k, then there exists a unique subgroup of order m in G. Since (p - 1) 
divides (p - 1) for all n, therefore it follows that the members of GF*(p) constitute the 
unique subgroup of order (p - 1) in GF*(p ). Now we develop the proof by considering dif-
ferent cases . 

Case 1. Let p = 2. If A is a generator of GF*(2 ), then X - 1, which means 
that A2 = A implying that A is a square which enables us to conclude that each element of 
GF*(2 ) is a square and thus -1 is a square. In the subsequent cases , p is understood to 
be an odd prime. 

Case 2. Let n be even. From the above analysis it is c lear that if A is a generator 
of GF*(pn) , then 

is a primitive root mod p. In view of the values of p and n we conclude that 

( ^ ) 

is even, which again means that this primitive root mod p is a square implying that -1 is 
a square. 

Case 3. Let n be odd. In this case, 

P - 1 
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is odd. Thus half the members of GF* (p) which are quadratic residues mod p would be 
squares and the remaining half a re not. If p = 1 (mod 4), it is well known that (-1) is 
a quadratic residue mod p and hence is a square. If p = 3 (mod 4), then (-1) is a quad-
ratic non-residue mod p and therefore is not a square. In this case -1 is the sum of two 
squares , which easily follows from (3) or (4). 
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FIBONACCI CURIOSITY 

The THIRTEENTH PERFECT NUMBER is built on the prime p = 521 = Li; 

2520(2521 _ 1 } . 
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