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Remark. It was originally observed by the author that if p is a prime 25, then
sz = p? (mod 100). Further study led to this theorem which characterizes those Fibonacci
numbers which terminate in the same last two digits as their indices. The original observa-
tion is proved as a corollary to the theorem.

Theorem. F, =n (mod 100) if and only if
n = 1, 5, 25, 29, 41, or 49 (mod 60) or n = 0 (mod 300) .

Proof. From [1], we have the well known formula

" 7. - zl_n[(?)+ 5(3) 52(2) M 5—2—(11:1)] ,

where m = n if n isodd, and m = n -1 if n is even.
Lemma 1. F60k = 20k (mod 100).
Proof. Observe that (1) implies

= n

@) 201y +5 n(n—‘%)u (mod 25) .

From [1], we have for n, m 2 2, (n,m) = d implies that (Fn’ F )= Fyq- Now (2)
implies 260k_1F60k = 60k + 50k (60k - 1)(60k - 2) (mod 25), which reduces to 26()k'lF6()k

= 10k (mod 25). Since 220 = 1 (mod 25), we get Feoi = 20k (mod 25). Since 6 divides
60k, it follows that Fg divides F60k' Now Fg =8, so F60k = 0 (mod 4). Combining
this with Feok = 20k (mod 25), we get Feok = 20k (mod 100), which proves Lemma 1.

We now prove one of the congruences in the theorem.

(3) n 1 (mod 60) implies Fn = n (mod 100) .

Proof. Clearly n = 1 implies F,=n (mod 100). Assume that for all k <N, n =
60k + 1 implies F, =n (mod 100). Now if n = 60N + 1 for even N, then n = 120k + 1
for k = N/2 < N.

From [ 2], we have the following identity, which will prove extremely useful in what

follows.

“) Fn+m+1 - Fn Fm * Fn+1 Fm+1 :
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In particular,

= 2 2
Fiooke1 = Fook * Fook+r -

Using Lemma 1 and induction hypotheses, we get

F = F2

2 - 2 2 =
0 60k+1 + F60k = (60k + 1) + (20k)* = 120k + 1 n (mod 100) .

If n=60N+1 for odd N, then n = 120k + 60 + 1 for k = (N -1)/2. Then
Foo= FroocFeo ¥ Fraoks1Fgp- 1nspection of any large table such as [3] verifies that Fgy =

61 (mod 100). Thus, by Lemma 1 and induction hypothesis, we have

Fn = 40k-20 + (120k + 1)-61 = 120k + 60 + 1 = n (mod 100) .
This proves the congruence.
Lemma 2. F60k+n = 20k-Fn_1 + (60k + 1)-Fn (mod 100) .
Proof. Lemma 2 follows from (3) and Lemma 1. The remainder of the proof is divided
into five cases.
Case 1. n =1 (mod 5).

Assume F n (mod 100). Then Fn = n (mod 4) and Fn = n (mod 25). Now (2)

1]}

n
implies 2n"1Fn = n (mod 25), since
5 Mo - Din - 2) t;)(n =2 - 0 (mod 25).
Also, (5,n) =1 and Fn = n (mod 100), so we may cancel the n and Fn to get Zn'l =1

(mod 25). Since 2 belongs to the exponent 20 (mod 25), it follows that n = 1 (mod 20).
Thus n = 1 (mod 4). But Fn =n =1 (mod4), so Fn must be odd. But Fn is even if

and only if n = 0 (mod 3), so n =1 or 2 (mod 3). Combining results,

=]
H

i}

2 (mod 3)

1 (mod 20)( ™ = 1 (mod60) or 1 (mod 20)

=]
I}

1 (mod 3) n
n n = 41 (mod 60) .

Now suppose that n = 41 (mod 60). Let n = 60k +41. By Lemma 2,
Fn = 20k'F40 + (Gok + 1)F41 (mod 100) .

By inspection of tables, we have Fy = 55 (mod 100) and F,; = 41 (mod 100). Therefore,

we have

Fn = (60k + 41) + 20k-55 = 60k + 41 = n (mod 100) .

This result, along with (3), completes the proof of Case 1.
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Case 2. n = 2 (mod 5).

This case is impossible, for as in Case 1, it follows that n = 1 (mod 20), a
contradiction.

Case 3. n = 3 (mod 5).

Let n = 3+ 5k. Then from (2),

22Kp = n e 2ELTNA O og g5,
Assuming F_=n (mod 100), we may cancel the F_ and n's, since (n,25) = 1, obtain-
ing 3-23+5k = 6 +5-2.1 (mod 25). Thus 25k+6 = 1 (mod 25). But this congruence implies

5k +6 = 0 (mod 20), or 5k = 14 (mod 20). This congruence is not possible, so case 3 is
impossible.

Case 4. n =4 (mod 5).

Assume Fn = n (mod 100). Let n = 4 + 5k. Then 3-24+5k = 6 + 5-3-2 (mod 25), so
251(—5 = 1 (mod 25), and 5k = 5 (mod 20). Thus n =5k+4 = 9 (mod 20). F and n

are therefore odd, so n = 1 or 2 (mod 3). Combining results,

1}

2 (mod 3)

9 (mod 20) = 49 (mod 60) or = 9 (mod 20)

1]]

n=1 (mod 3) n
n n n = 29 (mod 60) .

Now suppose that n = 29 (mod 60). Let n = 29 + 60k. By Lemma 2,

F =

n = FookFag * Fooks1Fag (mod 100)

By inspection of tables, Fyg = 11 (mod 100), and Fyy = 29 (mod 100). Thus by Lemma 1,

we have

F[1 = 20k-11 + (60k + 1)-29 = 60k + 29 = n (mod 100) .

Suppose n = 49 (mod 60). Let n = 49 + 60k. By similar reasoning,

F_ = 20k-Fg + (60k + 1)Fyy = 20k-76 + (60k + 1)-49 = 60k + 49 = n (mod 100) .

This result completes the proof of Case 4.

Case 5. n = 0 (mod 5).

Let n = 55.k, where s =1, and (5,k) = 1. We shall consider in order the possi-
bilities n = 0, 1, 2, and 3 (mod 4). Assume Fn =n (mod 100). If n = 0 (mod 4), and
s = 1, then n = 5k, where (5,k) = 1. Thus we get 2n—an = n (mod 25) from (2). Now
F][1 = n = bk (mod 25) implies 2n-1.5 = 5 (mod 25), so n =1 (mod 4). But in this case,
the last result is impossible, so it follows that s = 2. Also, since Fn must be even, we

have n = 0 (mod 3). Finally, n = 0 (mod 55) implies n = 0 (mod 25). Combining, we

have
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0 (mod 3)
0 (mod 4) )n = 0 (mod 300) .
0 (mod 25)

i

n

Let us suppose that n = 0 (mod 4); we have Fn odd, so there are two combinations:

= 1 (mod 3) n = 2 (mod 3)
n =1 (mod4) }n = 25 (mod 60) or = 1 (mod4)}n = 5 (mod 60) .
n = 0 (mod 5) n = 0 (mod 5)
If n =2 (mod4), we have
n = 0 (mod 3)
= 2 (mod4)}n = 30 (mod 60)
n = 0 (mod 5)

Let n = 30 + 60k. By Lemmas 1 and 2,

F

n - F60k+30 = 20kF29 + (60k + 1)F30 (mod 100) .

But this reduces to Fn = 20k +40 (mod 100). Now Fn =n = 30 + 60k (mod 100) implies
20k +40 = 60k + 30 (mod 100), or 40k = 10 (mod 100), which is impossible. If n =3

(mod 4), we get two combinations:

= 1 (mod 3) n = 2 (mod 3)
= 3 (mod4) }n = 55 (mod 60) or n =3 (mod4) })n = 35 (mod 60) .
= 0 (mod 5) = 0 (mod 5)
The first congruence results in
Fn = F55+60k = 40k + 45 (mod 100) ,

and Fn =n = 55+ 60k implies 20k = 90 (mod 100), which is impossible. The second
congruence results in

F =F

n 35460k = 40k + 65 (mod 100) ,

Il

and Fn = n = 35+ 60k implies 20k = 30 (mod 100), which is also impossible.
Suppose n = 5 (mod 60). Let n = 5+ 60k. Then Fn = F5+60k , SO

F_ = 20k-Fg + (60k + 1)F5 = 60k + 5 = n (mod 100) .
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Suppose n = 25 (mod 60). Let n = 25+ 60k. Then

F = Fy + 60k,

SO

|
1l

= 20k-Fy + (60k + 1):Fp; = 60k + 25 = n (mod 100) .

Finally, if n = 0 (mod 300), then 300 divides n, so Fgy, divides F . By Lemmal,
Fgp0 = 0 (mod 100), and thus F =0=n (mod 100).

This result completes the proof of the theorem.

Corollary. If p isaprime 25, then Fp2 = p? (mod 100).

Proof. By the theorem, F; = 5 (mod 100). If p is a prime >5, then

p=1,3,7,9, 11, 13, 17, or 19 (mod 20).

Thus p? = 1 or 9 (mod 20). Since p? = 1 (mod 3), it follows that p? = 1 or 49 (mod
60).
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