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Gauss, in his work on quadratic reciprocity, defined in [1] an analogue to the binomial 
coefficients: 

n r i (x 1 1 - D C x " - 1 - ! ) • • • ( x n - k + 1 - l ) 
LkJ (xk - l ) (xk-X - ! ) • • • (x - 1) ' 

n and k positive integers. In order to make the analogy to the binomial coefficients more 
complete, it is customary to let 

[ ! ]• ' • 
for n = 0, 1, 2, • • • , and 

H - • 
for n < k. We shall call these rational functions in x, Gaussian binomial coefficients. It 
is shown in [7] that these functions satisfy the recursion formula: 

f n l k l~n - l~l j . (~n - l l 

and if we note that as x —• 1, 

H-CO-
where 

(0 
is the usual binomial coefficient, then the above recursion formula becomes 

(i)-(vH'--O-
the recursion formula for the binomial coefficients. 

Just as the binomial coefficients are always integers, although they appear to be ratios 
of integers, the Gaussian binomial coefficients are in fact polynomials rather than rational 
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functions. This is easily seen from the recursion formula and mathematical induction. (See 
[7] . ) The Gaussian binomial coefficients and their multinomial analogues have some interest -
ing geometric interpretations and combinatorial applications in counting inversions and spec-
ial partitions of the integers. Some of these appear in [1] and [6]. 

There is another well known analogue to the binomial coefficients, the so-called "F ib -
onomial coefficients:" 

n I _ n n -1 n-k+1 
k j F

 = FkFk-r-- Fi 

n,k positive integers, and 

= 1 Vh = \VF 

for n = 0, 1, 2, • • • . It is well known that this is always an integer [5]. 
Let us now examine the Gaussian analogue of the "Fibonomial coefficient: 

a 
/ F n iw F n - 1 i \ / F n - k + l ... 
(x n - l)(x - 1) • • • (x - 1) 

(x k - l)(x k " ! - 1) . . . (x*l - 1) 

n ,k positive integers and 
n l _ I n 

° J F " Ln = i 
JF LnJr 

for n = 0, 1, 2, • • •. Again it is clear that as x - » l , 

Since 

a 

ea - ( 4 • 
F = F F + F F 

n k+1 n-k *k n -k -1 ' 

( x
F k + l F n - k + F k F n - k - l _ i ) ( x

F n - l _ -Q . . . ( x
F n-k+l _ ^ 

F, Fi -, Fn 
(x k - l)(x k ~ 1 - 1) . . . (x X - 1) 

F F + F F F F F F 
t k+1 n-k " V n - k - l l n - k - 1 _, r k n - k - l ^ (x - x + x - 1) 

(1) = — ~ 
(x k - 1) 

F F F F F F 
/ k V k - l ( x

F k + l F n - k _ 1} + ( x
F k F a - k - l _ x ) 

(x k - 1) 

P Z IJF 

fn - I"! 
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•>(!><F-',r-)[v]F 
F k F n - k - / ^ < F , ^ - D F . 

X 
"FT 

' F 
n-k-1 , 

+ i > x V k - 1 _ 

1=1 

so that we have a recursion formula for the "Gaussian Fibonomial coefficients" and this, with 
mathematical induction, implies the rather remarkable property of these functions: they are 
polynomials rather than rational functions as they appear to be. Furthermore if we let x—• 
1 in the recursion formula (1) we obtain 

(kjF
 = Fk+l^n k j F

 + Fn-k-l^k - i j j 

the recursion formula for the Fibonomial coefficients. This is the recursion formula used in 
[3 ] to prove that the Fibonomial coefficients are integers. 

The more general sequence gn where g0 = 0, gt = 1, gf l+2 = P-g n + 1 + q-gn> n > 0, 

p > 0, q > 0 , satisfies gQ = g k + 1 ' g n _ k
 + Q'%k'%n-.k-l ^S e e t 3 l ) a n d i f w e d e f i n e 

[ » ] as follows: [ » ] = ^ 
l W

 Bn-1 nX , s n -k+ l nX - 1) (x - 1) • • • (x - 1) 

(x " - l)(x K l - 1) . . . (x - 1) 

n ,k positive integers, and 

eL-H.- 1 

for n = 0, 1, 2, • • • , then it follows, mutatis mutandis, that 

( k+1 
y ^ x<Sk+1-i)'gn_k J fn - 11 

+ ! Y ^ x
(q"gn-k+l-l)-gk 

i=l 

j - n - 1 -
| _ k - 1. 

Again, 
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are polynomials. Furthermore the functions are again polynomials where g = f (t), the 
Fibonacci polynomials, at least for positive integral t, where f0(t) = 0, fA(t) = 1, 

fn+2(t) = '•W'* + fn(t )> n * ° • 

Since the Pell sequence can be generated as a special case of the Fibonacci polynomials 
(where t = 2), the above "coefficients" are polynomials also when defined in te rms of the 
Pell sequence. 

Fur thermore , because of the direct analogy between the definitions of the Gaussian b i -
nomial coefficients and the related Fibonacci analogues defined above and the expression for 
the binomial coefficients as ratios of factorials, the polynomials when arranged in a triangu-
lar a r ray like Pasca l ' s Triangle will have the beautiful hexagon property described byHoggatt 
and Hansell in [4] , that the product of the elements "surrounding" an element in the a r r ay is 
a perfect square and the set of six elements can be broken down into two sets of three, the 
products of the elements in each set being equal. In fact all the perfect square patterns of 
Usiskin in [8] will appear in these new ar rays ; the proofs ca r ry over directly. 
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