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1. INTRODUCTION

The object of this paper is to present a new combinatorial interpretation of the Fibon
acci numbers.

There are many known combinatorial interpretations of the Fibonacci numbers (e.g.,
[9]); indeed, the original use of these numbers was that of solving the rabbit breeding prob-
lem of Fibonacci [10]. The appeal of this new interpretation lies in the fact that it provides

combinatorial proofs of several well known Fibonacci identities. Among them:

=0

These results will be presented in Section 2. In Section 3, we shall describe further possi-

bilities for exploration of Fibonacci numbers via combinatorics.

2. FIBONACCI SETS

Definition 1. We say a finite set S of positive integers is Fibonacci if each element of
the set is E\VS{, where IS\ denotes the cardinality of S.

Definition 2. We say a finite set S of positive integers is r-Fibonacci if each element
of the set is EISI +r.

We note that "0-Fibonacci' means "Fibonacci."

Table 1
Subsets of {1, 2, 00, n} that are r-Fibonacci
n Fibonacci 1-Fibonacci 2-Fibonacci
1 ¢, {1} ¢ ¢

2 ¢, {1}, {2} ¢, {2} ¢
3 o, {1}, {2}, {3}, {3,2} ¢, {2}, {8} 9, {3}
¢, {1}, {2}, {3}, {4}, {2,3}, {2,4}, {34} o, {2}, {3}, {4}, (3.4} ¢, {3}, {4}

S
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Theorem 1. There are exactly - subsets of {1, 2, **+, n} that are r-Fibonacci

2
for n =r - 1.

__Pﬂ)_f_. When n = r-1 or r, ¢ is the only subset of {1, 2, *°°, n} that is r-
Fibonacci, since each element of an r-Fibonacci set mustbe =r. Since F{=F;=1, we see
that the theorem is true for n = r -1 or r.

Assume the theoremtrue for each n with r <n = nj (and for all r). Let us consider
the r-Fibonacci subsets of {1, 2, «-+, ng, ng + 1} that: (1) do not contain ny+ 1, and (2)

do contain ny + 1. Clearly there are F elements of the first class. If we delete ny +

n0+2—1’
1 from each set in the second class, we see that we have established a one-to-one corres-
pondence between the elements of the second class and the (r + 1)-Fibonacci swubsets of

{1, 2, co0, no}, hence there are F elements of the second class. This means

ng+2-(r+1)
that there are

Fn0+2—r * Fn0+2—(r+l)
= F(n0+1)+2—1‘

r-Fibonacci subsets of {1, 2, +++, ng+ 1}, and this completes Theorem 1.

Theorem 2. For n = 0,

P - 1+(g)+(n51)+(n52)+...
_ 1+Z(n-§+1>

=1
Proof. By Theorem 1, Fn+2 is the number of Fibonacci subsets of {1, 2, s, n}.
Of these ¢ is one such subset. There are
n
1
singleton Fibonacci subsets of {1, 2, ---, n}. The two-element Fibonacci subsets are just
the two-element subsets of {2, 3, cv0, n} , and there are

()

of these. In general, the j-element Fibonacci subsets of {1, 2, ", n} are just the j-

element subsets of {j, jtl, eee, n} and there are exactly

(1)

of these. Hence summing over all j and using Theorem 1, we see that
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= g n-j+1
Fn—l~2 L= ( j >

=1
Theorem 3. For n =0

n+1 n+1 n
(3 (v52) e (4
4 Y

+

1 _
>Fn *F = F2n+2 ’

or
o f
Z, (n ; 1>Fn+l—j = Fonsa
j=0
Remark. This is the identity stated in the Introduction with n + 1 replacing n.
Proof. By Theorem 1, F2n+2 is the number of Fibonacci subsets of {1, 2, "0, Zn}.
We first remark that there are at most n elements of a Fibonacci subset of {1, 3,
«++, 2n}, for if there were n +1 elements then at least one element would be =n which is
impossible.

Let Tj denote the number of Fibonacci subsets of {1, 2, =+, Zn} that have exactly
j elements =n. Clearly
n
Fon+a :E :Tj

=0

Now to construct the subsets enumerated by Tj’ we see that we may select any j-

elements in the set {n, n+1, ---, Zn} and then adjoin to these j elements a j-Fibonacci
subset of {1, 2, -++, n-1}. Since there are
n+1
i
choices of the j elements from {n, n+1, «¢-, Zn} and F(n-l)+2-j = Fn+1—j j-Fibonacci

subsets of {1, 2, ,n- 1}, we see that

_f{n-+1
'3 ‘( j )Fnﬂ-j

Therefore

Theorem 4. For n =0,
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1L+ F +Fp+-e+F =F o

_Piof. Let Rj denote the number of Fibonacci subsets of {1, 2y see, n} in which
the largest element is j. Let Ry = 1 in order to count the empty subset ¢. Clearly for
j > o, Rj equals the number of 1-Fibonacci subsets of {1, 2, 00, j- 1}; thus by Theorem
1, R Fj' Therefore

i~ Fyop+e-1 T
n n
Fn+2=1+z RJ.=1+E F .
1 1

3. CONCLUSION

The genesis of this work lies in the close relationship between the Fibonacci numbers
and certain generating functions that are intimately connected with the Rogers-Ramanujan '
identities. Indeed if D_l(q) = Dy(@ = 1, Dy(@) = 1+q, and Dn(q) = Dn_l(q) +ann_2(q),
then [3; pp. 298-299]

_z:jz n+1-j
(3.1) Dn(q) = q [ i ] s

where

Mn m noj+l it n
] = I (1-gqg )1 -¢q') , for 0<m <n, [ ] = 0 otherwise.
m j=1 _m

It is not difficult to see that Dn(q) is tke generating function for partitions in which each part

is larger than the number of parts and <n. Thus Dn(l) must be F the number of Fib-

n+2’
onacci subsets of {1, 2, -++, nj, and this is clear from (3.1) and Theorem 2 since

[g] equals (;)

at q = 1. Actually, it is also possible to prove g-analogs of Theorems 3 and 4. Namely,

n+1 ) _
(3.2) D, (@) = ; g [n ; 1 J D@
and :
n
(3.3) D@ =1 +Z quj_z(q)
=1

While (8.3) is a trivial result (3.2) is somewhat tricky although a partition-theoretic analog of

Theorem 3 yields the result directly.
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Since Dn(q) is also the generating function for partitions in which each part is =n and
each part differs from every other part by at least 2, we might have defined a Fibonacci set
in this way also; i.e., a finite set of positive integers in which each element differs from
every other element by at least 2. Such a definition provides no new insights and only tends
to make the results we have obtained more cumbersome. C. Berge [6; p. 31] gives a proof
of our Theorem 2 using this particular approach.

It is to be hoped that the combinatorial approach described in this paper canbe extended

to prove such appealing identities as

[12; p. 7]

[8 p. 150, e.q. (10.14.11)].

Presumably a good guide for such a study would be to first attempt (by any means) to establish
the desired g-analog for Dn(q). Such a result would then give increased information about
the possibility of a combinatorial proof of the corresponding Fibonacci identity. This approach

was used in reverse in passing from the formulae [1; p. 113]

(<]
Fp = z -1 ([1/2(n -nl - 5a)])

a=-o00

to new generalizations of the Rogers-Ramanujan identities ([4], [5]). I. J. Schur was the

first one to extensively develop such formulas [11] (see also [2], [7]).

REFERENCES

1. George E. Andrews, ""Some Formulae for the Fibonacci Sequence with Generalizations,"
Fibonacci Quarterly, Vol. 7, No. 2 (April 1969), pp. 113-130.

2. George E. Andrews, Advanced Problem H-138, Fibonacci Quarterly, Vol. 8, No. 1
(February 1970), p. 76.

3. George E. Andrews, "A Polynomial Identity which Implies the Rogers-Ramanujan Iden-
tities, " Scripta Math., Vol. 28 (1970), pp. 297-305.




146 COMBINATORIAL ANALYSIS AND FIBONACCI NUMBERS April 1974

4. George E. Andrews, 'Sieves for Theorems of Euler, Rogers and Ramanujan, from the
Theory of Arithmetic Functions,' Lecture Notes in Mathematics, No. 251, Springer,
New York, 1971.

George E. Andrews, ''Sieves in the Theory of Partitions, " Amer, J. Math. (to appear).

C. Berge, Principles of Combinatories, Academic Press, New York, 1971.

7. Leonard Carlitz, Solution to Advanced Problem H-138, Fibonacci Quarterly, Vol. 8,
No. 1 (February 1970), pp. 76-81.
8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Ed.,

Oxford University Press, Oxford, 1960.
9. V. E. Hoggatt, Jr., and Joseph Arkin, '"A Bouquet of Convolutions," Proceedings of the

Washington State University Conf. on Number Theory, March 1971, pp. 68-79.

10. John E. and Margaret W. Maxfield, Discovering Number Theory, W. B. Saunders,
Philadelphia, 1972.

11. I. J. Schur, "Ein Beitrag zur additiven Zahlentheorie, Sitzungsber,' Akad. Wissensch.
Berlin, Phys. -Math. Klasse (1917), pp. 302-321.

12, N. N. Vorobyov, The Fibonacci Numbers, D. C. Heath, Boston, 1963.
R ate oo 2

FIBONACCI SUMMATIONS INVOLVING A POWER
OF A RATIONAL NUMBER
SUMMARY

BROTHER ALFRED BROUSSEAU
St. Mary’s College, Moraga, California 94575

The formulas pertain to generalized Fibonacci numbers with given T, and T, and with
(1) T =T + T
n n-

n+l 1
and with generalized Lucas numbers defined by
@) Vn = Tn+1 + Tn-l

Starting with a finite difference relation such as

@) Ab/a)kT = O/ T, 6T, L, - aTy)

2k T 2k+2 2k+2 P T alcta
values of b and a are selected which lead to a single generalized Fibonacci or Lucas num-
ber for the term in parentheses. Thus for b = 2, a = 13, the quantity in parentheses is

3T2k-3' Using the finite difference approach leads to a formula
- k n+l, .n
) kzzjl 2/13)" Ty Ty o = (1/3) [(2 /180T, Ty - 2T5T7].

Formulas are also developed with terms in the denominator.

(Continued on page 156.)



