
COMBINATORIAL ANALYSIS AND FIBONACCI NUMBERS 

GEORGE E. ANDREWS 
The Pennsylvania State University, University Park, Pa. 16802 

1. INTEODUCTION 

The object of this paper is to present a new combinatorial interpretation of the Fibon 
acci numbers. 

There are many known combinatorial interpretations of the Fibonacci numbers (e. g. , 
[9 ]); indeed, the original use of these numbers was that of solving the rabbit breeding prob-
lem of Fibonacci [10]. The appeal of this new interpretation lies in the fact that it provides 
combinatorial proofs of several well known Fibonacci identities. Among them: 
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These results will be presented in Section 2. In Section 3, we shall describe further poss i -
bilities for exploration of Fibonacci numbers via combinatorics. 

2. FIBONACCI SETS 

Definition 1. We say a finite set S of positive integers is Fibonacci if each element of 
the set is — | s | , where | S | denotes the cardinality of S. 

Definition 2. We say a finite set S of positive integers is r-Fibonacci if each element 
of the set is — | s | + r . 

We note that n0-Fibonacci" means "Fibonacci. " 

Table 1 
Subsets of { l , 2, • • • , n} that are r-Fibonacci 

1-Fibonacci 2-Fibonacci n 
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4 0 , { l } 5 {2} , {3} , {4} , { 2 , 3 } , { 2 , 4 } , {3,4} 0 , {2} , ( 3 } 5 {4} , {3 ,4} 0 , {3} , {4} 
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Theorem 1. There are exactly F 9 subsets of { l , 2, • • • , n} that are r-Fibonacci 
for n ^ r - 1. 

Proof. When n = r - 1 o r r , <p is the only subset of { l , 2, • • • , n} that is r -
Fibonacci, since each element of an r-Fibonacci set must be >r . Since F1 = F2 = 1, we see 
that the theorem is true for n = r - 1 or r. 

Assume the theorem true for each n with r < n ^ n0 (and for all r ) . Let us consider 
the r-Fibonacci subsets of {l , 2, • • • , n0, n0 + l} that: (1) do not contain n0 + 1, and (2) 
do contain n0 + 1. Clearly there are F 9 elements of the first class. If we delete n0 + 
1 from each set in the second c lass , we see that we have established a one-to-one c o r r e s -
pondence between the elements of the second class and the (r + 1)-Fibonacci subsets of 
{ l , 2, • • • , n 0 ) , hence there are F l 0 . ,.v elements of the second class . This means L UJ n0+2-(r+l) 
that there are 

"En0+2-r + Fn0+2-(r+l) 

F(no+l)+2-r 

r-Fibonacci subsets of {l , 2, • • • , n0 + l } , and this completes Theorem 1. 
Theorem 2. For n c 0, 

n+2 

= 1 

Proof. By Theorem 1, F 9 is the number of Fibonacci subsets of { l , 2, • •• , n}. "n+2 
Of these (p is one such subset. There are 

( " ) 

singleton Fibonacci subsets of { l , 2, • • • , n} . The two-element Fibonacci subsets are just 
the two-element subsets of {2, 3, • • • , n} , and there a re 

(v) 
of these. In general, the j -e lement Fibonacci subsets of { l , 2, ••• , n} are just the j -
element subsets of { j , j + 1, • • * , n} and there are exactly 

(°-r) 
of these. Hence summing over all j and using Theorem 1, we see that 
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F n+2 

Theorem 3. For n a 0 

("^f;1)^-..^":1)^: n+1 F2n+2 

or 

E(°r) Fn+l-j F2n+2 ' 

Remark. This is the identity stated in the Introduction with n + 1 replacing n. 
Proof. By Theorem 1, F9 9 is the number of Fibonacci subsets of { l , 25 •• ' , 2n}. 
We first remark that there are at most n elements of a Fibonacci subset of { l , 3, 

• • • , 2n}9 for if there were n + 1 elements then at least one element would be ^n which is 
impossible. 

Let T. denote the number of Fibonacci subsets of ( l , 2, • - • , 2n} that have exactly 
j elements ^n. Clearly 

F 2n+2 

n 

3=0 

Now to construct the subsets enumerated by T., we see that we may select any j -
elements in the set {n5 n + 1, • • 8 , 2n} and then adjoin to these j elements a j-Fibonacci 
subset of { l , 2, • • • , n - l } . Since there are 

(T) 
choices of the j elements from {n, n + 1, • • - , 2n} and F , 1v+ 2_. = F

n+1, j -Fibonacci 
subsets of ( l , 2, • • • , n - l } , we see that 

T^ =' i V n 
Therefore 

n n 

F2n+2 = ^ T j = 2 - 1 V J )Fn+l- j 
3=0 j=0 X 7 

Theorem 4. For n ^ 0, 
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1 + F< + F2 + • • • + F = F ^ . 1 L n n+2 

Proof. Let R. denote the number of Fibonacci subsets of { l , 2, ••• , n} in which 
the largest element is j . Let R0 = 1 in order to count the empty subset <p. Clearly for 
j > 0, R. equals the number of 1-F.ibonacci subsets of {l, 2, • • • , j - l } ; thus by Theorem 
1, R. = F{. , ^ 0 , = F. . Therefore j ( j- l)+2-l j 

n n 

1=1 J=l 

3. CONCLUSION 

The genesis of this work l ies in the close relationship between the Fibonacci numbers 
and certain generating functions that are intimately connected with the Rogers-Ramanujan 
identities. Indeed if D (q) = D0(q) = 1, DA(q) = 1 + q, and D (q) = D (q) + qnD 0(q), —J. n n—J. n—z 
then [3; pp. 298-299] 

(3.1) Dn(q) = 
j>0 

where 

x y [••}-'] 
r ~i m -4-1 • _ 1 r i 

^ = n (1 - q11"3 X ) ( l - qJ) , for 0 < m < n5 £ = 0 ot 

It is not difficult to see that D (q) is the generating function for partitions in which each part 
is la rger than the number of par ts and <n. Thus D (1) must be F „, the number of Fib-
onacci subsets of ( 1 , 2, • " , n ) , and this is clear from (3.1) and Theorem 2 since 

[m] e(3uals fmj 
at q = 1. Actually, it is also possible to prove q-analogs of Theorems 3 and 4. Namely, 

n+1 

(3.2) D2n(q) = X V [ n r ] D n - l - ^ . 
]=0 

and 

n 

(3.3) Dn(q) = 1 +2^ qJDj_2
(c|) • 

j=l 

While (3.3) is a trivial resul t (3.2) is somewhat tricky although a partition-theoretic analog of 
Theorem 3 yields the result directly. 
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Since I>n(q) is also the generating function for partitions in which each par t is ^n and 
each par t differs from every other part by at least 2, we might have defined a Fibonacci set 
in this way also; i. e. , a finite set of positive integers in which each element differs from 
every other element by at least 2. Such a definition provides no new insights and only tends 
to make the resul ts we have obtained more cumbersome. C. Berge [6; p. 31] gives a proof 
of our Theorem 2 using this part icular approach. 

It is to be hoped that the combinatorial approach described in this paper can be extended 
to prove such appealing identities as 

Y = F F + F F 
n+m n-1 m n m+1 

[12; p. 7] 

2 * - l F E(2A ,y 
[8; p. 150, e.q. (10. 14. 11)]. 

Presumably a good guide for such a study would be to first attempt (by any means) to establish 
the desired q-analog for D (q). Such a result would then give increased information about 
the possibility of a combinatorial proof of the corresponding Fibonacci identity. This approach 
was used in reverse in passing from the formulae [1; p. 113] 

Fn = 2 - f ( " l f ([l/2(n -"I - 5a)]J 

to new generalizations of the Rogers-Ramanujan identities ( [4] , [5]). I. J. Schur was the 
f irst one to extensively develop such formulas [11] (see also [2] , [7]). 
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FIBONACCI SUMMATIONS INVOLVING A POWER 
OF A RATIONAL NUMBER 

SUMMARY 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, Moraga, California 94575 

The formulas pertain to generalized Fibonacci numbers with given TA and T2 and with 
(1) T ^ = T + T n 

n+1 n n-1 
and with generalized Lucas numbers defined by 
(2) V = T _,_, + T n . 

n n+1 n-1 
Starting with a finite difference relation such as 

( 3 ) A ( b / a ) k T 2 k T 2 k + 2 " ( b k / a k + 1 > T 2 k + 2 ( b T 2 k + 4 " a T 2 k > 
values of b and a are selected which lead to a single generalized Fibonacci or Lucas num-
ber for the term in parentheses. Thus for b = 2, a = 13, the quantity in parentheses is 
3T . . Using the finite difference approach leads to a formula 

(4) E ( 2 / l 3 ) k T 2 k T 2 k + 5 - ( l / 3 ) [ ( 2 n + 1 / 1 3 n ) T 2 n + 5 T 2 n + 7 - 2 T 5 T 
k=l L 

Formulas are also developed with terms in the denominator. 

(Continued on page 156.) 


