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THE MORGAN-VOYCE POLYNOMIALS
1. INTRODUCTION

Polynomial sequences often occur in solving physical problems. The Morgan-Voyce
polynomial results when one considers a ladder network of resistances [1], [2], [3]. Let
R be the resistance of two resistors R; and R, in parallel. The voltage drop V across a

resistance R due to flow of current I is, of course, V =.IR.

Ry Ry vy
Now
VvV = 1131 - 12R2 = (11 + IZ)R
Thus
L I,
v = Bis 7 - R
so that
1o0,2_ 1
R vV V R R,
Thus the formula for resistors in parallel is
1 _ 1 1
R R 'R

For resistors in series
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so that the formula relating the resistances is
R = Ry + Ry.
This is all we need to solve the ladder network problem.
2. LADDER NETWORKS

Consider the following:

X X X X C
Ao—ANA AN AN AAN/ o s 0 o
Z; 1 1 1 1 Zo
B o oD

n sections

Assume that the terminals A and B are open. We desirethe resistance as measured across

terminals C and D. For n ladder sections, let us assume that the resistance is Zn’ and

consider the output Z, .

X
CV
Zn 1 Zn+1
? 3 .
Since x and Zn are in series,
R = x+ 7%
n
Now R and 1 are in parallel, so that
x+Z +1
z1 -t = 7
n+1 X n X n
X+ 7Z
” _ n

41 T X FZF1
n

To see what this means, let Zn =

bn +1(x) x + bn(x)/ Bn(x) B xBn(X) + bn(X)
Bn+1(x) T x + 1+ bn(x)/Bn(x) T+ 1)Bn(x) + bn(x)

bn(x)/Bn(x), where bn(x) and Bn(x) are polynomials.
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so that

(2.1) {bn+1(x) = XBn(X) * bn(x)

Bn+1(X) = (x + l)Bn(x) + bn(x)

which is a mixed recurrence relation for the two polynomial sequences. Clearly, Z; = 1,
so we set by(x) = 1 and By(x) = 1. This completely specifies the two sequences which we
call the Morgan-Voyce polynomials.

Without too much trouble, one can derive that both sequences {bn(x)} and {Bn(x)}
satisfy

(2.2) Un+2(x) = (x + 2)Un+1(x) - Un(x) .

This takes care of the resistance as seen from the output end of the ladder network. We now
go to the input end, and consider input Zi .

X X X
(s} AAA- 4 —AN vse AAN O C
Zn+1 §1 Z
t n
o] ® O PR ¢ D
B
Z
1 1 1 n
== =t =, or, R =
R z, 1 Zn+l
Zn xZn+x+Zn
oyl T XTI T T 7oA
n n

Again let Zn = Pn(x)/Qn(x). Then,
P (®) x(P () +Q (x) + Pn(X)

n+1 _
Q& P&+ Q&
That is,
Pn+1(x) = &+ DP (0 +xQ &,
Qn+1(x) = Pn(X) * Qn(X)
Simplifying,
P = Q0 - QK
Qn+2(X) - Qn+1(x) = (x + 1)(Qn+1(X) - Qn(X)) + XQn(X)
or

Quip® = & +2Q & - Q

From the case n = 1, we see that Py(x) = x+1, Qux) =1, Qyx) = x+2, so that

Q]n(x) = Bn(x) from the output considerations earlier, and
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P& =Q ,®-QK =B & -BK

But, recalling the defining equation (2.1) for the Morgan-Voyce polynomials, a simple sub-
traction gives us bn+1(x) = Bn+1(x) - Bn(x). Thus, Pn(x) = bn+1(x) so that

_ bn+1(x)

Zn - Bnixi ’

where bn(x) and Bn(x) are the Morgan-Voyce polynomials. This is the resistance as seen
looking into the ladder network from the input end.

There are now several theorems we can prove.

3. THEORETICAL CONSIDERATIONS

Using the recursion (2.2) for bn(x) and Bn(x), it is a simple matter to compute the

first few Morgan-Voyce polynomials.

n bn(x) Bn(x)

0 1 1

1 x +1 X + 2

2 X%+ 3x + 1 X2 + 4x + 3

3 x3 + 5x% + 6x + 1 x3 + 6x + 10x + 4

4 xt+ 728 + 15%% + 10x + 1 o+ 8x3 + 21x% + 20x + 5

5 x% + 9xt + 28x3 + 35x% + 16x + 1 x% + 10x% + 36x% + 56x% + 35x + 6
b o = (x+2)b  x -b &
Bn+2(x) = (x + 2)Bn+1(x) - Bn(x)

Comparing these polynomials to the Fibonacci polynomials fn(x), folx) =0, fi(x) =1,
fn +1(x) = xfn(x) + fn_l(x), leads to some fascinating results.

FIBONACCI POLYNOMIALS

fn (X) /

n

1

2

3 x+1 f3/1 ?3/1

4 B+ 2x £ 17 47 6" 4

5 xt+3x+1 f5/1 5/10/10 5

6 x° + 43 + 3x f6/1/6/15 20 15 6

7 x84+ 5xt+6x2+ 1 f7/1 7 21 3 3 21 7 1
8  xT+ 6x5 + 10x® + 4x f8/
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Theorem 3.1. See [3], [5]. The polynomial sequences {bn(x)}, {Bn(X)}, and
{fn(x)} are related by

f2n(x) = XBn-l(X2 )

fanra® = b, &%)

Proof 1. By Generating Functions.
It is not difficult to show that

[>e]
1 -2 =Zb(x)/\n
1-(x+2n+ A n=0n

- (x+2n+22 =0

Hence,
(=]
Y Z
A(l A ) _ b (XZ)}\.ZH+1
1- 2+t ="
(=)
2
Ax - z xB (@2
1 - (X2 + 2))\2 + A4 =0 n-

Adding these gives

[>e]
2
AL +ax =A%) A =Zf(x)>\“,
1-22 40 - 1-xa-ar =0

where we recognized the generating function for the Fibonacci polynomials { fn(x)}.
Proof 2. By Binét Forms.
Since the Fibonacci polynomials have the auxiliary equation

Y: = xY+ 1,

which arises from the recurrence relation and which has roots

_x+ﬂjx2+4 _x -Nx*+4a
R b =—,:

it can be shown by mathematical induction that the Fibonacci polynomials have the Binét form

£, = (@ - ")/ - p) .
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Similarly, from the recurrence relation for the Morgan-Voyce polynomials, we have the aux-
iliary equation
Y2 = (x +2)Y-1

with roots

x + 2+ Nx? + 4x S_x+2—\1x2+4x

2 ’ 2 E]

leading to, via mathematical induction,

B & = @ - ")/ - s)
Then,

£ = @ - 65/ - p) = [ - )]/ - p)

[<x2 + 2+ x’\[x2_+_4>n_ (x2 + 2 - xM)n]/m

2 2
On the other hand,

2 N 2\ 2 2 1 s\l _—
Bn_l(xz) = [(X +2+zx +4X) _(X +Z£\/X +4X)j|/xfx4+4x2

Notice that, since Nxt +4x% = |x|\/xZ +4,

xBn_l(xz) = f_ (%)

2n
Since bn+1(x) = Bn+1(x) - Bn(X) ,
2y = 2y _ 2
xbn+1(x ) xBn+1(x ) xBn(x )
= fopag® - L o = xfy g
leading to

b &) = 1, (x) .

2) =
“n+3(x) or bn x?) =1

2n+1

Proof 3. By the Recurrence Relations.
Observe that

bylx) = 1, by(x) = x + 1, b p® = (x+2b & - b ) ;

flx) = 1,  fx) ==+l £ & = &2 6 -6 LK),
Thus,

bots) = 1, by(d) = &+ 1, b ) = &+ 2b &P - b ()

Now, the sequences {!om(x2 )} and { f2m+1(x)} have both the same starting pair and the same

recurrence relation so that they are the same sequence. Similarly,

Bylx) = 1, Bylx) =x+2, B ,& = x+2B & - B &;

f(x) = x, fix) = x* + 2x, f2n+6(x) = (2% + 2)f2n+4(x) - f2n(x)
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Next,
xBy(x?) = x, xBy(x?) = x3+2x, XBn+2(){2) = (x2 + 2)xBn+1(x2) - xBn(Xz) ,

so that the sequences {xBn_l(xz )} and {fzn(x)} are the same.

Several results follow immediately by applying known properties of the Fibonacci poly-
nomials. (See [3], [6], [7].)

Corollary 3.1.1.

bn(l) = F and Bn_l(l) = F

2n+1 2n

for the Fibonacci numbers Fn'

Corollary 3.1.2. The coefficients of bn(x) and Bn(x) lie on adjacent rising diagonals
of Pascal's triangle.

Corollary 3.1.3. The polynomials {bn(x)} are irreducible if and only if 2n +1 is a

prime.

4. FURTHER PROPERTIES OF MORGAN-VOYCE POLYNOMIALS
Let

Then

2 _fx+2 -1y [x+2 -1\ _[(x2+4x+3 -(x+2)
Q=1 0 1 0]~ X+ 2 -1
B3 (x) -By(x)
“\B®)  -B®
It can be proved by induction [10] that
Qn _ (Bn+1(x) _Bn(x)
Bn(x) -Bn_l(x)
Then, since det Qrl = (det Q)n ,
(X)Bn_l(x) - B%l(x) = -1.

Bn+1

Thus, one can write much by virtue of having Bn(x) trapped in a matrix.

Let
R=(*" 2 -2 RQ" = Cn+1(x) 'Cn(x)
2 -x+2))° Cn(x) —Cn_l(x) ’

Coy®@C, &) - Clx) = (& +4x +4) +4 = (2 + 4x) .

so that
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Then, Cn(x) corresponds to the Lucas sequence.
Let {Ln(x)} be the Lucas polynomial sequence, Lj(x) = 2, L;(x) = x, Ly(x) = x* + 2,
Ln+2(x) = an+1(X) + Ln(x). Actually,
L& =f ,&+f &,
and for x = 1, Ln(l) = Ln, the nth member of the Lucas sequence 1, 3, 4, 7, 11, 18,
29, **-
Now, C_i(x) = 2, Cylx) = 2, Cy(x) = x+2. Thus, since

= Z -
2L2n+4(X) (< + 2Ly ,&) - Ly (),
we have L2n(x) = Cn-l(x ), and Cn-l(l) = LG, a Lucas number with even subscript. Al-
so, since
= = 2
LZn(X) f2n+1(x) * f2n—1(x) ’ and f2n+1(x) bn(x )s

the relationship LZn(X) = Cn_l(xz) implies that

Cn(X) = bn(X) + b .(x).

n+l
Also,
xB (x) = b ;& -b &,
so that
bn+1(X) = [Cn(x) + xBn(X)]/Z.
Finally, applying the divisibility properties of Lucas polynomials [6], [8], [9], we
have the

Theorem. C n(x) is irreducible.
_— 2

5. ATTENUATION RESULTS

The attenuation is the ratio of input voltage V. to output voltage V.. Sincethe system

I o)
islinear, we can assume that the output voltage is1V. Let us start with no resistive network.

There is no current (IO = 0) and between the terminals is 1 volt (VO = 1).

Iy — 1 volt

I, = 1 amp Vy = x+ 1volis

So we see that
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We shall see that

First, we note that from bnﬂ(x)

B

n+1

we have the lemma,

Lemma 1.

In the ladder network, the voltage across the n

current is also Vn.
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I, =0 =B, V
11 =1 = Bo(X) ’ V1
In = Bn-l(X) and

B1r1+

= xBn(x) + bn(x)

() = (x+ DB, () + b ()

1

x) = Bn();) + b

=1= b_l(X) )
=1 = Bo(X)
Vn = bn-—l(X)
and from

= Bn(x) + xBn(X) + bn(X),

(%)

n+1l

th

V():l

n+l n
NN A v b0 AN e
xQ 1Q
n+l n
lo —% G0 ¢ "3
Now, the voltage currents obey
Vn+1 = XIn+l * Vn’ In+1 - Vn * In ’
Now assume that I[l = Bn_l(x) and Vn = bn(x). Then,
Vn+1 = xBn(x) + bn(x) = bn+l(x) s
InJrl = bn(x) + Bn-l(x) = Bn(x) .

applying Lemma 1 to the expression for L.y which completes the induction.
We note that

Bn(x) =

A%

I

n+1

n+l

= bn+l

vV +V
n n-

I

x) = X[Bn(X) + Bn—l(x) + o

1

4 .. +V0 = bn(x) +bn_1(x) + e

These follow directly from the special resistive network.

+ Bylx) + 1] ;

+ bo (X) .

155

unit resistance is Vn; hence, the
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(Continued from page 146.)

The material consists of two pages ofexplanation, six pages of tables for systematizing

the work of finding the Fibonacci and Lucas expressions in parentheses, and 78 pages of for-

mulas. There are 625 formulas in all arranged in categories according to the difference re-

lation from which they are derived.

The material may be obtained by writing to the Managing Editor:

Brother Alfred Brousseau
St. Mary's College
Moraga, Calif. 94575

In loose-leaf form, the price is $3.50; with ring binding and flexible cover, the price is $4.00.
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