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In [1], we find three well known divisibility properties which exist between the Fibon-

acci and Lucas numbers. They are

(1) F IF iff m = kn;
n m
@) L |F iff m =2kn, n > 1;
n m
i = - >
(3) L, ]Lm iff m=@k -1n, n > 1.

The primary intention of this paper is to investigate the decomposition of Fibonacci and
Lucas numbers in that we are interested in finding n such that nIFm or n Lm' As a re-
sult of this investigation, we will also illustrate several interesting congruence relationships
which exist between the elements of the sequences {Fn} and {Ln} .

The first result, due to Hoggatt, is

Theorem 1. If n = 2-3k, k 2 1, then nan.

Proof. Using « and B as the roots of the equation x2 -x -1 =0 and recalling that
Ln =o"+ Bn, we have

a3n + BBn

L3n -

_ (an 4 Bn)(a2n B anﬁn . an)
— n —
= Ln(LZX1 - (<1)7) = Ln(L2n -1).

2 — + . .
However, Ln L2n 2 if n is even so that

(4) L3n = Ln(len -3

The theorem is true if k = 1 because n = 6 and Lg = 18. The result now followsby
induction on k together with (4).

Curiosity leads one to ask if there are other sequences { nk} such that n, ank. The
authors were unable to find other such sequences until they obtained the computer results of
Mr. Joseph Greener from which they were able to make several conjectures and establish
several results. Before stating the results, we establish the following theorem which was

discovered independently by Carlitz and Bergum.
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Theorem 2. If p is an odd prime and pan then pk ank-l , k21,
Proof. By hypothesis, the theorem is true for k = 1. Assume pk ank—l and let
t = pk_1 then pt|L .. We shall show that pit IL

Using the factorization of zP + yp, we have

nt.P p

@t + @)
p

L ) E ;(_1)i+1ant(p-i)ﬁnt(i—l)
i=1

The middle term of the summation is

(5)

npt

(6) (-1) (p+3)/2(aﬁ)nt(p-1)/2 - (_1)(11'1'1) (p—l)/z .

th

The sum of the q and (p+1 - q)th terms, where g + p+1)/2, is

g (c1)9+1 GntP-0) gntla-1) - ;)p-q ,ntla-1) gnt(p-q)

= (_1)q+1(aﬁ)nt(q—1)(ant(p—2q+l) 4 Bnt(p_zq.u))

_ (n+1) (g-1)
=D Lnt(p-2q+1)

Using (6) and (7) in (56) with p = 4k +1, we have

2k
_ (n+1)(g-1)
® ant = Lt E :(—1) Lnt(4k-2q+2) 1
k
] n+1
4nt(k *E :(‘1) Lontek-2q+1) © 1
g=1

n+1 n
= Lnt(E :[5F2nt(k q) + 2] +§ : (-1) nt(zk 2q+1) ~ 2071 +

n+1
Znt(k Q) E : -1 nt(Zk 2q+1) *

nt

= 2 2 = -t - i
Since L4r 5F2r + 2, Lr Lzr + 2(-1)7, and t(2k - 2q + 1) is odd.

Now ptant’ (2k - 2q +1) is odd, and 2(k - q) is even so that by (2) and (3) one sees.
that p is a factor of the expression in the parentheses of (8). Hence, pztanpt and the theo-

rem is proved if we have p = 1 (mod 4).
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Suppose p = 4k + 3. An argument similar to the above yields

k+1 k-1

_ 2 n+l .o n

) Lot = Dnt z :Lnt(2k—2q+3) +§ :( D 5t kq) ~ P
q:l q=0

and we see, as before, that pztlL if p = 3 (mod 4).

npt
Since 3|Lj, we have

k k
3Ly g1 oF 3°[L, gk for k2 1.

However, 2|L, ok for k 2 1. But (2,3) = 1 and we have an alternate proof of Theorem 1
so that Theorem 1 is now an immediate consequence of Theorem 2. Furthermore, this pro-
cedure can be used to establish sequences {nk} such that n ank. We have
Theorem 3. Let p be any odd prime different from 3 and such that p|L k=1,
Let n = 2.3 p where t =1; then nlL
Proof. By Theorem 1 and (3), we see that 2-3 lL .3kpt for all t = 1. However, by

Theorem 2 and (3), one has p lL -gkpt for t = 1. Since (2 -3k, pt) = 1, one has 2. 3kpt

2.3k’

2.3kpt for t =1.
By an argument similar to that of Theorem 3, it is easyto see that the following are true.
Corollary 1. If p and g are distinct odd primes such that p IL and g \L where m

and n are odd, then (pq) _1 forall k 21.

o——
and
Corollary 2. If p and gq are dlstlnct odd primes different from 3 such that pll.z 3k

and q|L 3kwhere k=1 andn=23pq then n\L for t =0 and r = 0.

Usmg F2r = FrLr’ we have
Corollary 3. If p is an odd prime and p\Ln then pk \ Fank-l for k 2 1.
and
Corollary 4. If p and q are dlstlnct odd primes such that plL and qle where
>
m and n are odd integers then (pq) \ FZmn(pq)k 1 for k= 1.

Corollaries 3 and 4 can be strengthened if we know that p is an odd prime and p\F ‘
To do this, we show another theorem discovered independently by Carlitz and Bergum.
Theorem 4. If p is an odd prime and pIFI1 then pk ank—l forkall k2 1.
Proof. By hypothesis, the theorem is true for k = 1. Assume p F _1 andlet
| np
t=p then pt Fnt‘

the factorization of xP - yp, we have

We shall show that p2t ‘ ant' Using Binet's formula together with

p

- nt(p-i) ,nt(i-1)
(10) ant = FntZa B

i=1
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n(p-1)/2 . th

The middle term of the summation is (-1) while the sum of the q and

p+1- q)th terms, where q # (p + 1)/2, using the formula L,. = SF% +2(-1)¥, is

11) Atm-a) Bnt(q 1) . ntla- 1)Bnt(p -q) _ (_1)n(q—1) LGt<p_ZQ+1)/2
= D" 1)5Ff1t(p 2q+1)/2 © 2(-p P12
By substitution into (10), we obtain
p-1/2
(12) Fopt = Fnt Z -2y 5F Lt (p-2q+1)/2 T p(-1)" -1/
q=1

Using ptlF and (1), we see that p is a factor of the expression in the parentheses of
(12) so that p’t \ F -
Let F (L ) be the least such that piF (plL ) then it is still unresolved if p IF (p i
k/rF (pk*L ) for npk -2 < m < npk 1 and k = 2.

An immediate consequence of Theorem 4, by use of (1), is

and the theorem is proved.

Lm) or p

Corollary 5. If p and g are distinct odd primes such that p Fn and q[Fm then

k
©9)"[F L og
Another result of Theorem 4 which was already discovered by Kramer and Hoggatt and

yk-1 for k 2 1.

occurs in [2] is

. :
(13) 5 Fye,  for kz1

since Fy = 5. Note that this result also giv’es us a sequence {nk} such that nk] Fnk

Just as the authors could find several sequences {nk} such that nlenk they were
also able to show that there are several other sequences {nk} such that nkl Fnk' With this
in mind, we prove the next four theorems.

Theorem 5. If n = 3m2r+1 where m > 1 and r =1 then niFn.

Proof. By the discussion following Theorem 2 and Corollary 3, we have 3m|F4.3m for
m 21. But 4|Fg so that 4|, .gm for m > 1. Since &, 3™) = 1, we have 4'3m|F
for m = 1 and the theorem is proved if r = 1.

4.3

Since

Fangr+z = Fymor+ilymorts = Famprel (6Fgmor + 2)

and 2|F;, we have by induction on r that 3m2r+2\F

Theorem 6. If

amor+2

n = 2r+1 g 5k’

where r > 1, m > 1, and k2> 1 then n Fn.
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Proof. This result follows immediately from Theorem 5, (1), and (13) because

6K, o tlgmy g

By using Theorem 4 and Corollary 5 in an argument similar to that of Theorem 6, we

have

Theorem 7. Let p be any odd prime different from 3 and such that p Fgr*lnm where

_— O
r>21 and m2 1. Let n = 2r+13mpk where k = 1, then ann.
and

_ ST+l m C . .

Theorem 8. Let s = 2" "3 . Let p and q be distinct odd primes such that p FS
and q Fs' Let n = spkqt where k2 0 and t > 0 then niFn.

For our next divisibility property, we establish

Theorem 9. If k 21 then 2k+2lF3_2k.

Proof. Since SIFG, the theorem is true for k = 1. Suppose s = Zk_l and 8s F6s'
i g = = 2 . . .
Since rl.?.s F6sL6s FGS(5 FSS +2) and 2|F3, the result follows by induction with the
use of (1).

Throughout the remainder of this paper, we analyze the prime decomposition of Ln
where n is odd and establish several congruence relations between the elements of {Fn}
and {Ln}. With this in mind, we first establish

Lemma 1. If n is odd then Ln = 4tM where t = 0 or 1 and M is odd.

Proof. Since n is odd, we have (1) Ln =L where m is even, (2) Ln =L

3m+1 3m-+2

where m isodd, or (3) L_ =L where m is odd.
n 3m

= = = i = 2 oY
If Ln L3 +1 and m 2r then Ln L6r+l' Since 2 F3r’ L6r 5F3r+2( 1),
and (L

= i = 40 i
6r’ L6r+1) 1, we have L3m+1 is odd or that L3m+1 4'M where M is odd.

By a similar argument, it is easy to show that L3m+2 = 4'M where M is odd.

Suppose Ln = L3m where m = 2r + 1. By an argument similar to that of Theorem

2, it is easy to show that

fr-1
4 ( ZO 5F23(r—q) + 1> if r is even;
q=
n 61r+3 o1 :
- if r is odd .
4 qz=:o ¥ g = L

Now Z\FS(r-q) so that the terms in the parentheses are odd and Ln = 4M where M
is odd.

The following theorem is due to Hoggatt while the proof is that of Brother Alfred
Brousseau.

Theorem 10. The Lucas numbers Ln with n odd have factors 4t1VI where t = 0 or
1 and the prime factors of M are primes of the form 10m + 1.

Proof. The first part of the theorem is a result of Lemma 1.

From L!-L L . = (-1)", we have that L L

n-1"n+1 n-1""n+1 =5

prime divisor p of Ln' However, L][l+1 = Ln+Ln_ so that Ln+1 = Ln_

(mod p) for any odd

(mod p).

1 1
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Therefore, szrl—l =5 (modp) and 5 is a quadratic residue modulo p. Since the only
primes having 5 as a quadratic residue are of the form 10m + 1, we are through.

Using Binet's formula, it can be shown that

)(j—l)/Z’

(15) L + (-1 j odd.

12t+ 5F(12t+j-1)/2 F(12t+j+1)/2

Combining the results of Lemma 1 with (15), we have

Theorem 11. There exists an integer N such that

(a) Ligesr = 1N+ 1,

(b) L12t+3 = 4(10N + 1),

(c) Ligpss = 10N + 1,

(d) L12t+7 = 10N - 1,

(e) Ligtig = 4(10N - 1),
and

@ Liogry = N -1

Since the proof of Theorem 11 is trivial, it has been omitted. However, a word of cau-

tion about the results is essential. Even though L = 4(10N +1) and L =10N + 1,

12t+3 12t+5
not all prime factors are of the form 10n + 1 . since 192|Lypy4qg 2nd 1992|Lyy jgp45 How-
ever, the number of prime factors of the form 10n -1 which divide L12t+3 or L12t+5

must be even.
Since 112|Ly.jp+r, 211|Lyp.i49 and 112|Lyp.pp4qy, we See that there can be primes of

the form 10n + 1 which divide L12t+j for j =7, 9, or 11. In fact, the number of primes

of the form 10n - 1 which divide L12t+j where j = 7, 9, or 11 must be odd.

Examining [4], we see that Ly = 29-599786069 so that L

tors of the form 10n + 1.

12t+1 Day have prime fac-

By Binet's formula, we have

(16) Fn+6 - Fn—2 = Ln * Ln+4 = Ln+2L2 '

Hence, by expanding and substitution of (16), we have

231

an § : Lnvai = Frapit2g ~ Fog

i=0
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Using (16) and induction, it can be shown that

2l_1 j

(18) Lpvaks = Upr@icpex B Loger 3 =1
ry i=1
i=0

Hence, by (17) and (18) with k = 1 and n replaced by n + 2, we have
i

(19) Ln+2j+1 lgl in = Fn+2j+2 - Fl'l

so that

(20) Fooj+2 = F (mod L,j) for 1 =i =j

and

(21) F oj+2 = F (mod Lo4oj+l) if # 0.

In papers to follow, the authors will generalize, where possible, the results of this pa-
per to the generalized sequence of Fibonacci numbers as well as to several general linear

recurrences. They will also investigate sums and products of the form occurring in (18).
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