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Fibonacci's sequence is generally known as the sequence 1, 1,2, 3, 5, 8, 13,21, 34,, 55, 89, - defined by Uf = 1, 
u2 = h Un+t = un + un-h ' n which n is a positive integer > 2 It is easy to extend this sequence in such a way 
that n may be any integer number. 

We then get: 

- -21, 13, -8, 5, -3, 2, -1, /, 0, 1, 1, 2, 3, 5, 8, 13, 21, •« 

u„8 u-y u„6 us u„4 u„3 u„2 u-i u0 ui u2 u3 u4 u5 u6 u7 u8 

In this sequence we have: 

(1a) u-i = 1, U2 = h un+i = Un+Un-1 for. all u e Z . 
The following definition is known to be equivalent to the previous one: 

(1b) un = g^zf~ fora,f ^eZ' 
in which a is the positive root and |3 the negative root of the equation x = x+ 1. 

We know the following relations involving a and j8 to be valid: 

a * % + %y/s = 16180339 -

P - % - %s/s = -0.6180339 .» 

a2 = a+1, B2 = p+1, aP=-1, u+p=1, a-p=sjs. 

2 
The proof of the identities in this paper will in most cases be based upon a = a+ 1. 

The purpose of this article is to study the results of an extension of definition (1b) in such a way that for n not 
only integers, but also rational numbers, and even all real numbers can be chosen. 

If we try n = ft in definition (1b), we get 

in which $A 

Uy2 
_a*-fl* 

a-fi 

' = xj& causes trouble, because |8 is negative. 
To avoid these difficulties, we 

(2) 

or un = xn + iyn, in which 

i define: 

Un 

a2n~ xn = — — 
(a-

_a2n-

- COS Ml 

•P)aP 

i 

- cos MT + i'sin MT 

(a-fl)an 

and Vn sin MT 

(a-P)aP 
In this definition we have: n e R, un^C. 

First we shall have to show, of course, that this definition is equivalent to (1b) for n e Z . We calculate: 
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„ _ a2-cosTS + isinn „ a2 + f _a2+1 _ -
fa-fi)a ar-aJP ar + 1 

„ _ a4~cos27r+j$m2T[ _ a4 - / _ (a2 + I Ma2 - 1) _ fa2 •/• /ja _ a2 + 1 _ -
(a-p)a2 fa-~pia2 fa- p)a2 fa-p)a2 a2-a® 

Now we will show that for all n the relation un+i = un + un„i remains valid. 

- a2"*2 - cos (n + 1fa+isin(n + 1h _ a2n+2 + cos mr - / sin mr 
un+1 — — — — — - —- . - / 

(a-P)an+1 (a-Pia"*1 

_ a2i1"2 - cos fn - 1h+isin (n - 1h _ a2"""2 + cos rnr - / sin rnr 

(a-VaT1 (a-pia?-1 

The identity which we have to prove can now be reduced to: 

a + cosnir-i sin mr = aJn+1 -a cos nit + ai sin mr + a2n + a cos mr - a i sin nn , 

or: 
fa2 - a- f)(a2n - cosnrr + isin nn) = 0 , 

which is a proper identity, since a -a- 1 = 0. 
The numbers, introduced by definition (2) also satisfy identically the relation umun + um+iun+<i = um+n+i, 

which is well known for the ordinary Fibonacci numbers. The truth of this assertion can also be verified without too 
much difficulty. 

Furthermore we can show that for the moduli of the complex numbers the relation \u^\ •- \un\ is valid, just as 
for the real numbers. For xzn + y?n = x2 + y2 is equivalent to 

On \ 2 / . \ 2 / 9n \ 2 I . \ 2 

a~zn __ CQS njf \ ^ | sm mr \ _ I a - cos mr \ + \ . sm mr 
fa-Ph"11 j {(a-pia* J \ (a-~P)an j \fa-~P)an 

and this in its turn is identical to: 
aT4n - 2a~2n cos mr+1 „ a4n - 2a2n cos nir+1 

or: 
(a-P)2dT2n (a-P)2a2n 

a"2n - 2 cos mr + a2n = a2n -2 cos mt+.aT2" q.e.d. 
We now calculate the numerical values of u„, for n climbing from -4 to +4, with intervals of 1/6 as shown in 

Tablet 
If we take a close look at these numbers, we find that 

uVs - iu-% - 0L569 + 0.352i, 

u„V/2 = iu1% - 0.217 +0.921 i, 

u2% = iu-2% = 1.489+ 0i134i, 
etc., etc. 

It is simple to prove this property from definition (2), and it is clear that it corresponds with \u„n \= \un\. 
If we make a map of the newly introduced numbers in the complex plane, we get the interesting picture shown in 

Fig. 1. The curve that we have thus found intersects thex-axis in those real points corresponding with the well-known 
Fibonacci numbers for n e Z 

For decreasing negative values of n it has the shape of a spiral, and for increasing positive values of n it has the 
shape of a "sinus-like" curve, with increasing "wave-length" and decreasing "amplitude." 

Note how the relation \u„n \ = \un\ is made visible through this graphical representation of un. 
On differentiating, 
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a2n - cos nn 
Yn sm nn Table 1 

(a-$an (a~$)an 

with n as independent variable, we find: 

dxn _ In a (a2n + cos nn) + it sin nn 
dn 

dn 

so that 

dyn 

dxn 

(a-$)an 

= 7T cos nn - in a sin nn 

(a-$)an 

IT cos nn - in a sin nn 
^2n n In a (a n + cos nn) + nsin nn 

For instance: 

dy 
dx, n=0 2lna 

JZ-
dx, 

- vloae = 11416x0.4343 
2 log a 2x0.2090 

= 1264. 

n=1 aln a aloga 

11416x0.4343 _ _4Q35 
1.618x0.2090 

dx n=-1 
na 

In a 
naioge 
log a 

3.1416 x 1.618x0.4343 10.56 

-24 
-23 
-22 
-21 
-20 
-19 

I - 1 8 
I -~17 

-16 
-15 
-14 
-13 
-12 
-11 
-10 

r-9 
-8 
-7 
-6 
-5 

~~4 
-3 
-2 
-1 

0 

| 6 ) i 

-3.000 + 0.000 i 
-2.380+ 1.415 i 
-1.229 +2.261 i 
+ 0.083 +2.410 s 
+ 1.203 + 1.926! 
+ 1875 + 1.026 i 
+ 2.000 + 0.000 i 
+ 1.629 + 0.874! 
+ 0.931-1.398 i 
+ 0.134-1.489! 
-0.542- 1.190! 
-0.941 - 0.6341 
-1.000 + 0.0001 
-0.751+0.540! 
-0.298 + 0.864! 
+ 0.217 + 0.9211 
+ 0.661 + 0.736 i 
+ 0.934 + 0.392 ! 
+ 1.000 + 0.000! 
+ 0.878-0.334 i 
+ 0.633-0.534! 
+ 0.352-0.569! 
+ 0.118-0.455! 
-0.007-0.242! 

0.000 + 0.000! 

Un = Xn+iYn 

6n 

| 0 
+1 
+2 
+3 
+4 
+5 
+6 
+7 
+8 
+9 

+10 
+11 
+12 
+13 
+14 
+ 15 
+ 16 
+17 
+18 
+19 
+20 
+21 
+22 
+23 
+24 

un=xn+iyn 

0.000 + 0.000 i I 
+0.127 + 0.206! 
+0.335 + 0.330 i 
+0.569 + 0.352 i 
+0.779 + 0.281 ! 
+0.927 + 0.150! 
+1.000 +0.000 i 
+1.005-0.128! 
+0.967 - 0.204! 
+0.920-0.217! 
+0.897-0.174! 
+0.920 - 0.093 i 
+1.000 + 0.000! 
+1.132 +0.079 i 
+1.302 + 0.126! 
+1.489 + 0.134! 
+1.676 + 0.107! 
+1.848+0.057! 
+2.000 + 0.000! 
+2.137-0.049! 
+2.269-0.078! 
+2.410-0.083! 
+2.573-0.066! 
+2.768-0.035! 
+3.000 + 0.000! 

0.2090 
etc., etc. 

Among the points in which the curve intersects it-
self, there is one with y # 0, a complex number z, 
so that z e £ but z £ /?. With the extension we 
now have achieved, we can make a similar extension 
for all Fibonacci-like sequences 

If we start with any two complex numbers, say z ; 
and Z2, adding them to find the following number 
we get 

zp Z2, z<i+Z2,Zi+ 2z2,2zj + 3z2, 3zi +'5z2, 6zf + 8Z2, 8zi + 13z2, 

etc., etc. The coefficients are Fibonacci numbers. 
To find the extension of this sequence, all we have to do is to apply the extension to the coefficients. 
In this manner we will now study the sequence that appears when we start with z ; = 1, Z2 = i Then we have: 

I i, 1+i, 1+21 2 + 31 3 + 5i, 5 + 81, 
etc. It is clear that we can start by extension "to the left," to find: 

- , 5-31 -3 + 21 2-1 -1 + 1 I i, 1 + 1 1+2ir 2 + 31 3 + 51, .--. 

For reasons of symmetry we shall refer to these terms as v^, in such a way that v-% = 1 and 

v+% = h v+i% = 1 + 1 v+2% = 1+2if v+3% = 2 + 31 -" 

I v~2% = 2~h v-3% = -3 + 21, •••-v-1% = ' 
The relation between the -̂sequence and the (/-sequence is: vk 

Uk-V2 + Uk+1/J- Therefore: 
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vk ~ Uk-% + Uk+%i = (%k-ys
 + iYk-yJ + (xk+ys

 + iYk+yJi = (xk-%- Yk+yJ + i(Vk-%+*k+%) • 

We shall nqw demonstrate that \v~k\ = \vk\. 

I vk\2 = (*k-x ~ Yk+yJ2 + (Yk-% +*k+%)2 = (4-y2 + Y2-yJ + (xk+% + Yk+yJ - 2(xk-%yk+% - yk-%xk+%). 

We can now say that: 

Wk\2 = \"k-x\2+\uk+x\2-2(xk.%yk+%-yk-%xk+%). 
Therefore: 

I v.* I 2 = I u-k-<% I 2 A"-k+x\2 - fo-k-xy-k+x - y-k-xx-k+x) = \"k+x I2 + W-x I2 -2(x.k-xY-k+x - y-k-x*-k+xl 
so that the relation that we want to prove, namely \v„k\ = \vk\, or \v„k\

2 = \vk\
2, Is equivalent to 

Xk-XYk+X ~ Yk-XXk+X = * - * -£ / - * • / •£ - Y-k-XX-k+X • 

When we now proceed to introduce the index t by means of k = t + X; -k = —t - X, we have to prove that: 

Xtyt+1-Ytxt+1 = x-t-jy-t-y+ix-t . 
Or: 

a2t - cos tit x sin (t + pit sin tit x g2^t+1^ ~cos(t+ Pit 

(a-$)af (a-Pfa**1 (a- p)af (a-$)atH 

= a2(~*~1}' -cos(-t- Pit x sinj-tfa sinf-t-Pit x a2(mmt) - cos f-th 

fa-fl/a"*"' {a-flla* (a-Pid*'1 (a-PJaT* 
This is an identity, if completely worked out. 

We have already seen that if vk = ak +ihk, then ak = xkm.% - yk+y2 and bk = yk-x
 +xk+x • Thus: 

a - v „ - °<2k~1- cos (kit - Xrt) sinfkit+Xit) $k - xk„y2 - yk+y2 -7—r k+% 

Or: 

a - a2S< ~ aSi"n kit- C0S kit 
k~ <a-Vak+V> 

In the same way we derive from hk = yk-y2 +xk+y2: 

h = &2k+1 - ®>cos krt + sin kit 

It is now fairly easy to calculate some values of vkl simply by choosing different values of k; we find 
¥y2 = I, ¥V/2 = 1+1, V2X = 1+2l, 

as it should be. We also have: 

Vf = -l=r+i>Ja, 1/1/ = -j=r + iy/(i , 

(so that I/L./ = Vf), and VQ ~ 0- Also 

¥2 = -j^ + isja (=v„] = i/f) and vm2 = --7= - i\/a / V3 =-j=r + 2iy/a and vm3 =-y= + 2i\/a, ¥4 =-=r +3i\fo>. 

It now seems Very likely that 

Vk \ Z/a +j^\ Uk ' 
for all values of t Indeed we have: ^ ' 

(a% + ia/s) x uk = (aTH + ia%)(xk + iyk) = (a'%xk - aVsyk) + i(a~%yk + a/zxk), 
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whereas 
"%„. _ „%>,. - a~V2(a2k -coskn) _ a/z sin k-n = a2k - cos kir- asin kn _ 

a ~xk - a yk (a - $)ak (a - (3)ak (a - $}a! k+y2 
ak< 

and in the same way we prove that aVsyk + aVsxk = hk ,so that (a% + iaVz)uk = ak + ibk = vk, which had to be 
proved. The relation / > 

Vk \JT* W Uk 

implies that the graphic representation of the numbers vk in the complex plane has the same shape as the one that 
we have found previously for uk ; 

Fig. 2 Graphic Representation of the Numbers vk in the Complex Plane 

There is one continuous curve going through all these points, a curve that originates from the one in Fig. 1 by 
multiplication with 

It is clearly shown how the points (0,1);. (1,1); (12); (2,3); (3,5); (5,8); (8,13); - belonging to the index-
values %, V/2,2%, 31A, 4Y2, 51A, 6Y2, - . of k are lying closer to the asymptote y = ox as k increases, thus indicat-
ing that 

lim -& = a 
*-*» uk 
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34 

21 

13 

SET 
- 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 

Fig, 3 Graph of \un\ as a function of n 
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