AN EXTENSION OF FIBONACCI'S SEQUENCE

P. J. deBRUIJN
Zoutkeetlaan 1, Oegstgeest, Holland

Fibonacci's sequence is generally known as the sequence 7, 7,2, 3, 5, 8, 13, 21, 34, 55, 89, - defined by u; = 1,
U = 1, Upty = Uy +up_g, inwhich n is a positive integer >2. It is easy to extend this sequence in such a way
that 7 may be any integer number.

We then get:

- =21, 13, -8 5 -3 2 -1, 1, 0 1, 1, 2 3 5 8 13 21, -
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In this sequence we have:
(1a) up =1, us=1, Upry = up+uy; for al neZ.
The following definition is known to be equivalent to the previous one:

(1b) u,,=c—‘g—_'—gLn forall neZz,

2

in which a is the positive root and (8 the negative root of the equation x“ = x+ 7.

We know the following relations involving a and § to be valid:
a=Y%+%/5 = 1.6180339 -
B=%—%/5 = —0.6180339 -
2

a®=a+1, B2=0+1 af=-1, a+f=1 a-B=+5.

The proof of the identities in this paper will in most cases be based upon a2 =a+l.

The purpose of this article is to study the results of an extension of definition (1b) in such a way that for n not
only integers, but also rational numbers, and even all real numbers can be chosen.
If we try n=2% in definition (1b), we get

% %
a” —
uy = ,
% a-B

in which ﬁyz = /B causes trouble, because § is negative.
To avoid these difficulties, we define:

2n

a“" — cos nm +i sin nmw
(2) un = -
fa—Bla

or U, = Xp*iy, . inwhich

2n .

_ a“" —cosnm
Xy = ——————— and Vn = _‘.’lﬂﬂ; .
fa—Bla" fa—Bla

In this definition we have: n€R, u, cC.
First we shall have to show, of course, that this definition is equivalent to (1b) for n 2. We calculate:
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= o —cosm+isinm - a+1 =a,2+7 =7
{a—Bla ?-af B+1
uy = a?—cosontisinzn - _a®—1 _(aP+1)a®-1) _ (P+1)a _ a®+1 _ 7
(a— Bla? (a— Bla? (a— BJa? (a-Bla® a?®-af
Now we will show that forall n the relation u,+7 = u,+u,-7 remains valid.
Uptq = a®"*2 _ cos (n+ 1)u+isinln + 1w _ a®*2 +cos nmw—isin nw
n
{a— B)an+1 (a—ﬁ}a””
g = a®'2 _ cos (n— Nutisinln—1)u _ a®2+cosnm—isinnm
n- .
(a—Bla™ (a—Bla""
The identity which we have to prove can now be reduced to:
@2 ¢ cosnm—isinnm = a7 — acos nm+ aisin n+ a?" + a2 cos nm— aZisin nm ,
or:
(a® — a— 1)(a®" - cosnm+isinnm) = 0,

which is a proper identity, since aZ-a-1=0

The numbers, introduced by definition (2) also satisfy identically the relation u,u, + Upr1Upt1 = Umin+t,
which is well known for the ordinary Fibonacci numbers. The truth of this assertion can also be verified without too
much difficulty.

Furthermore we can show that for the moduli of the complex numbers the relation |u_,| = |u,| is valid, just as
for the real numbers. For x_2,, + y.z,7 = xﬁ + y,? is equivalent to

( a2 —cosnm ? + ( sinom_ \° _ [ a®—cosnm 2+ sinnm_\?
 fa—BJa™" fa—Bla™" fa—B)a” fa—Bla"

and this in its turn is identical to:

& — 2072 cosnm+ 1 _ a®" — 202" cosnm+ 1
(a-B8)2a2" (a—B)%a®
or:
a2~ 2cosnm+a® = a®" - 2cosnn+a?" qed.

We now calculate the numerical values of wu,, for n climbing from —4 to +4, with intervals of 1/6 as shown in
Table 1.
If we take a close look at these numbers, we find that.

uy = iu_y = 0.569+0.352i,

U-13 = fugy = 0.217+0.921i,

Uy = iu_oy = 1.489+0.134i,
etc., etc.

It is simple to prove this property from definition (2), and it is clear that it corresponds with |u_,| = |u,|.

If we make a map of the newly introduced numbers in the complex plane, we get the interesting picture shown in
Fig. 1. The curve that we have thus found intersects the x-axis in those real points corresponding with the well-known
Fibonacci numbers for n € Z

For decreasing negative values of n it has the shape of a spiral, and for increasing positive values of n it has the
shape of a ““sinus-like” curve, with increasing ““wave-length” and decreasing “amplitude.”

Note how the relation |u_,| = |u,} is made visible through this graphical representation of u,, .

On differentiating,
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_d® —cosnm _ _sinnm

(a-Bla" " (a— Bla”

with n as independent variable, we find:

Xn

9% _ Ina(a®" +cos nm) + mwsin n

dn (a—B)a” !
4Yn _ mcosnm—In asinnm
dn fa—Bla” ’
so that
Yn _  meosnm—Inasinnm
dxp In ala®" +cos nm) + msin nm

For instance:

dy _ _m__ mloge _ 3.71416 x 0.4343
dxp=g 2Ina 2loga 2x 0.2090
= 3.264.
dy _ __ wm _ mloge
dXp=1 alna alga

- _31416X 04343 _ _4 05
1.618 x 0.2090

_dy _ _ma_ maloge
x.__; Ina loga
_ 31416 x 1.618 x 0.4343 _
0.2090 = 1056
etc., etc.

Among the points in which the curve intersects it-
self, there is one with y + 0, a complex number z,
so that zeC but z& R With the extension we
now have achieved, we can make a similar extension
for all Fibonacci-like sequences

If we start with any two complex numbers, say z7
and z2, adding them to find the following number
we get

2y, 22,27122,27+229, 227+ 329, 327+ 525, 521+ 825, 827 + 13z,

etc., etc. The coefficients are Fibonacci numbers.
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Up = Xptiyp

Table 1
6n
—24 -3.000+0.000i 0
-23 -2.380+1.415i +1
=22 —-1.229+2.261i +2
-21 +0.083+2410i +3
=20 +1.203+1.926i +
-19 +1875+1.026i +5
—18 +2,000+0.000i +6
—-17 +1.629+0.874i +7
—-16 +0931-1.398i +8
—-15 +0.134- 1.489i +9
—-14 —-0.542 - 1.190i +10
—-13  —0.941- 0.634i +11
-12 -1.000+0.000i +12
—-11  —0.751 +0.540i +13
—-10 -0.298 +0.864 i +14
-9 +0217+0921i +15
-8 +0661+0.736i +16
-7 +0934+0392i +17
-6 +1.000 +0.000i +18
-5 +0.878-0.334i +19
-4 +0633-0.534i +20
-3 +0.352-0.569i +21
-2 +0.118 -0.455i +22
-1 -0.007 -0.242i +23
0 0.000 +0.000i +24
6n up = xptiyp

0.000 + 0.000 i
+0.127 +0.206 i
+0.335+0.330i
+0.569 + 0.352 i
+0.779 + 0.281i
+0.927 +0.150 i
+1.000 + 0.000 i
+1.005 -0.128 i
+0.967 - 0.204 i
+0.920 - 0.217i
+0.897 - 0.174 i
+0.920 - 0.093i
+1.000 + 0.000i
+1.132+0.079 i
+1.302 +0.126 i
+1.489 +0.134 i
+1.676 + 0.107 i
+1.848 +0.057i
+2.000 +0.000 i
+2.137 - 0.049 i
+2.269 - 0.078 i
+2.410 -0.083 i
+2.573 - 0.066 i
+2.768 - 0.035 i
+3.000 + 0.000 i

To find the extension of this sequence, all we have to do is to apply the extension to the coefficients.
In this manner we will now study the sequence that appears when we start with z; = 7, zo =i Then we have:

1,0 1+ 1+2i, 2+3i, 3+5i, 5+8i,
etc. It is clear that we can start by extension “‘to the left,” to find:

v, §=30, =3+2i, 2—i, =1+i, 1,0, 1+ 1+2[, 2+3i, 3+5j, -

For reasons of symmetry we shall refer to these terms as vy, in such a way that v_y = 7 and

Vi =0, Vagy = 140, Vaoy = 1+2 Vezy = 2+ 30 -

Vogyg = i—1, vepy = 2—i, v.gy = —3+2i, -

The relation between the v-sequence and the u-sequence is: vy = uy.y * ug+yi Therefore:
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Vi = Uk-3%* Uksssl = (Xpeus # iV icotg) + (Xpcr 5 TV ksl = (Kpety = Vit ss) # ily gy + Xpeang) .

We shall now demonstrate that |v_g| = |vi].

2 _ 2 2 _ 2

il © = (X-tg = Vierss) # (Vi # Xr5)? = OBgg #yBsg) + OXFoir # yBass) — 20— igV ki s — Vie-siXict ).
We can now say that:

|2

e l? = lug-21? # lugesss? = 20—V ker3s — ViereXcrss)

Therefore:
vk 12 =|u- -z|2 +{U-k+%|2—2(X-k-zV..k+yz — Vek-Xokr ) = Vet P+ |”k-%|2 =~ 2(X -1V ke #36 — Yok TX k5.
so that the relation that we want to prove, namely |v_g| = |vg|, or |v_g|? = |vg|?, is equivalent to

Xi=-2Yk+% — Vi-%Xk+% = X-k=3Y-k+% — V—-k-%X-k+% -

When we now proceed to introduce the index ¢ by means of k = ¢+ % —k = —t— %, we have to prove that:
XeVer1 = VXt = Xepei Vet = Vep=1 Xt -
Or:
a? — costm w Sinft+1)m _ _sintn a2t _ s (t+ 1)1
fa-Blat  (a-Bla*’ (a-Blat (a— Blat*’

_ a2(—t— 7)

—cos(—t—1)n  sin(=t)n _sin(~t—1)w a2t _ cos (~t)n ]
(a—Blat? (a-Blat  (a—BlatT (a—Bla~t
This is an identity, if completely worked out.
We have already seen that if vy = ay #iby, then ag = X3 — Vi+3 and by = Yp—3 + Xg+25. Thus:

a?~1 _ cos (kn— %m) _ sin (km + %m)

&% (a—p) (a—Blakt%

g = X1~ Vk+% =

Or:

- a?* — asin kn— cos km

(a— Bak*”

ak
In the same way we derive from by = yx_y + Xg+3 -

_ a®*1 _ acos km+ sin km

bk - D
(a— Blak**

It is now fairly easy to calculate some values of vy, simply by choosing different values of &; we find

Vy2=i, Viy = 1+i, Voy = 1+2i,
as it should be. We also have:

vy = —7a—+i\/&, vog = TZ"/\/C_L p

(so that v.; = v7J, and vp = 0. Also

. . 2 . =2 . _ 3 .
V2=\—/%+1\/E (=v_y=vy) and v_2=—\/—%—1\/6; v +2iv/a and V_3-ﬁ+21\/a, V4-\7a- + 3G,

It now seems very likely that

7 .
= oL E— a ,
vk ( Ja ’*/—>”"

for all values of & Indeed we have:

(a™% ~%

+ia”) x ug = (@™ +ia”)xg +iyi) = (@ %x — a’yp) +ila Py, +a%xi ),
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whereas 4 .
a¥xp -y = a”(a® —coskn) _a”sinkn _ a®* — cos kn < asin km _ 3y,
(a— BJak (a— Blak (a— Blak?* k
and in the same way we prove that a'%yk + a%xk = by 50 that (g% + iay’}uk = ay + iy = vy, which had to be
proved. The relation ; \
Vk =(\/T + i\/C—'-) ug

implies that the graphic representation of the numbers v, in the complex plane has the same shape as the one that
we have found previously for vy - 7 .

x=-5% ak

3%
-3, k=3
k=-3% 2

k=-1,k=+1,k=+2

k=-4%

k:-6%

Fig. 2 Graphic Representation of the Numbers v in the Complex Plane

There is one continuous curve going through all these points, a curve that originates from the one in Fig. 1 by
multiplication with

7+i
VA

It is clearly shown how the points (0,7); (1,1); (1,2); (2,3); (3,5); (5,8); (8,13); - belonging to the index-
values %, 1%, 2%, 3%, 4%, 5%, 6%, - of k are lying closer to the asymptote y = ax as k increases, thus indicat-
ing that

u
/im k—H=a_

k—>oo Ug
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—

9-8-7-6-5-4-3-2-10122345@678 9

Fig. 3 Graph of |u,| as a function of n
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