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1. Tchebichef polynomials of the second kind have been defined by

Upeglx) = 2x Uplx) ~ Up_4(x) ,

Up=1, Us;=2x.
Itis known [1] that

U, lcos 0) = &—ng—.%;]—}g ,
and
fn/2]
Und = 35 ("77) =120
=0
Also {2]

Fn./..] =i-” U,,(I'/Z) ’
where £, represents the n™ Fibonace number.
The first few polynomials are

Uplx) = 1
Uelx) = 2x
Uslx) = 4% — 1

Usix) = 8x° —4x
Uglx) = 16x% — 12x% + 1.

Figure 1

If we take the sums along the rising diagonals in the expression on the right-hand side, we obtain an interesting
polynomial p,{xJ, which is closely related to Fibonacci numbers.
The first few polynomials are

pilx) = 1, palx) = 2x, palx) = 42,

(1.1)
palx}) = ac-1, psix} = 16x% — 4x .

In this note we shali derive the generating function, recurrence relation and a few interesting properties of these
polynomials.

2. Onputting 2x = y in the expansion on the right-hand side in Figure 1 we obtain
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Figure 2

The generating function for the k™" columnin Figure 2 is (— 1k(1- ty}_(k”). Since we are summing along the
rising diagonals, the row adjusted generating function for the k™ column becomes

hily) = (—1)%(1 = ty)~(k*1) (3k41

Since
o ) k
7 —t3
5 = iy 2 [720]
- T—ty o\ 1-
- t
T—ty+t3
we have
(2.1) Gix,t) = Z pn(X)tn = L 3
n=0 1—-2xt+t

From (2.1) we obtain

Z o)t = t(1—2xt+¢3)77

n=1

On expanding the right-hand side and comparing the coefficients of t”+7, we obtain

[n/3]
- n n—-2 n-3 n—4 n-6 _ n—2r r n-3r

22 ppeld = (207~ (752 ) (20734 (75 ) (2070 4= 3 (757 ) (-0 1207

=0
Again from (2.1) we have

(1-2xt+¢3) Z Palx)t" =t .
n=1

On equating coefficient of "3 on both sides, we obtain the recurrence relation
(2.3) Pa+3(x) = 2xppialx) —ppix), n > 1, pix) =1, pofx) = 2x, pslx) = 22,

Extending (2.3) we find that p,(x) = 0
From (2.1) we have

(2.4) Gixt) = tF(2xt—t3), Flu) = (1-u)™" .
Differentiating (2.4) partially with respect to x and ¢, we find that G(x,t) satisfies the partial differential equation

2t 26 _(x-32) 25 _26 =0.
At ox
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Since o e

gtg-= g npplx) ", %f— = ;; prlx)e
it follows that
(2.5) 2xppe2lx) = 3p5(x) = 2n + 1)ppiafx) .

3. On substituting x = 7 in the polynomials p,,{xJ, we obtain the sequence { P, } which has a recurrence relation
(3.1) Potg = Ppag +Pp+1, Pg=0. Pj=1.
The sequence gP,,} is related to the Fibonacci sequence {F,,} by the relation
Pon=Pp_q = Fq:
which leads to

n
(3.4) P, =2 Fr .
k=0
From (3.4) several interesting properties of the sequence {P,,} can be derived. A few of them are
(n Py = Fpp—1
)
(2) -~ P = Forg—1(n+3)
(3.5) k=1
I
3) ZPI? = Fn+2Fn+3"‘2Fn+4+(n+4}
k=1
n
(4} with 0 (1+x%i) = agajx+ - +apx", m= L+l +L, .
=1

and g,, equal to the number of integers & such thatboth 0< k< m and ag=0, Leonard [3] has proposed
a problem to find a recurrence relation for g,,. The author [4] has shown that the recurrence relation is

Gn+2 = Gpr1¥Gn*h g1 =0, q2=1.
Comparing this result with (3.1) we observe that

Py = Gntr -
On using (3.5)—(1) and (2.2) we cbtain
[n/3]
(3.6) Frz=1+ 2, (777 ) -7 273, a5 0,
=0

a result which is believed to be undiscovered so far.
| am grateful to Dr. V. M. Bhise, G.S. Technological Institute, for his help and guidance in the preparation of this
paper.
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