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(4.14) 5 ^ (-t}kkH2k+i = (-1)n(nH2n+3
 + (n+nH2nH)-P 

n 

(4.15) 4 £ (-1)kkHm+3k = 2(-7)n(n + Wm+3n+f - W H ^ ^ - H^ (m = 2, 3, •».) 
k=0 

and so on. 
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where X is the largest root of 
(3) x4-x3 -3x2+x+ 1 = O. 

The astonishing appearance of (1) stems from a.peculiarity of (3). The Galois group of this quartic is the octic 
group (the symmetries of a square), and its resolvent cubic is therefore reducible: 
(4) P-8z-7 = (z+JMz2-!-/) = O. 
The common discriminant of (3) arid (4) equals 725 = 52*29. While the quartic field QfXJ contains Q(sJE) as a 
subfield it does not contain Q(sj29l Yet X can be computed from any root of (4). The rational root z = -1 
gives X=(A + 1)/4 while z = (1 + ̂ /29)/2 gives X=(B+1)/4. 

It Is clear that we can construct any number of such Incredible Identities from other quartscs having an octic group. 
For example 

x4-x3-5x2-x+1 = O 
has the discriminant 4205 = 292 • 5, and so the two expressions involve s/s and %/29~ once again. But this time 
Q(y/&) Is In Q(X) and Q(y/s) Is not. 

*MM** 


