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where X is the largest root of
(3) x*=x3-32+x+1 = 0.
The astonishing appearance of (1) stems from a peculiarity of (3). The Galois group of this quartic is the octic
group (the symmetries of a square), and its resolvent cubic is therefore reducible:
(4) B-8-7=(z+1)P-2-7) = 0.

The common discriminant of (3) and (4) equals 725 = 52. 29. While the quartic field @(X) contains af\/5) as a
subfield it does not contain Qf+/29). Yet X can be computed from any root of (4). The rational root z = —1
gives X=(A+1)/4 while z=(7+/29)/2 gives X=(B + 1)/4.

It is clear that we can construct any number of such incredibie identities from other quartics having an octic group.
For example

B-xP—5P—x+1=0
has the discriminant 4205 = 292 . &, and so the two expressions involve \/5 and /29 once again. But this time
0(\/29) isin O(X) and Q(/5) is not .
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