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1. DEFINITIONS

Van der Poorten [6] in a generalization of a result of Shannon and Horadam [8] has shown that (in my notation)
if { w,g’) } is a linear recursive sequence of orbitrary order / defined by the recurrence relation

i
(1.1) w,(” = Z‘Pi/-w,/,ii'j ., on >
=1
where the P;; are arbitrary integers, with suitable initial values W{,”, w;”, -, w,(f),, then the sequence of pow-

ir . . ge .. .
ers { Wn’ , forintegers r > 7, satisfies a similar recurrence relation of order at most

()

In other words, he has established the existence of generating functions
i — ; . o T
12 RS L g
=0

The aim here is to find the recurrence relation for { w,ﬁ”’ and an explicit expression for w,m (x). We shall con-
cern ourselves with the non-degenerate case only; the degenerate case is no more difficult because the order of the
recurrence relation for { wlilr } is then lower than

n
r+i—1
r
It is worth noting in passing that Marshall Hall [1] looked at the divisibility properites of a third-order sequence
by a similar approach. From a second-order sequence with auxiliary equation rocts a; and ap he formed a
third-order sequence with auxiliary equation roots a.? , ag ,0702 .

2. RECURRENCE RELATION FOR SEQUENCE OF POWERS

Van der Poorten proved that if the auxiliary equation for { w,i” } is

i i
(2.1) glx) = xi—z P;,-Xi" =l (x—qy =0,
j=1 =1

then the sequence { W,gi)’ } satisfies a linear recurrence relation of order
r+i—1
r

MA A
(2.2) grx) = 27{[ (x — a;7 aj2 - CL/’,-’} =0,

n=r

with auxiliary equation

the zeros of which are exactly the zeros of g(x) taken r ata time.
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We now set

u
- ~f _ +i—1
(2.3) g,/x) = x“—-Z Ruix"™, u = ( 4 i ) ,
=1
and we seek the ;.
Macmahon [5, p. 31defines f;, the homogeneous product sum of weight j of the quantities a;, as the sem
of a number of symmetric functions, each of which is denoted by a partition of the number ;. He showed that in

our notation

7 Ay A A
e 3 R )
Tang 2 N

The first three cases of /1; are
hy = Pi; = Zajz ,
hy = PA+Pp = Sa? + Zaqa, |
hs = Pﬁ+2Pi,P Piz = ad 1 +Za7 Qjp+ 2 Aipls

Now g,{x) =0 is the equation whose zeros are the several terms of /1, with ;=0 for j>i, since from
its construction its zeros are a;; taken r atatime; thatis,

Ryg = h, with az=0 for j>1i,

(t)
distinct zeros of g.(x) = 0
Macmahon has proved [5, p. 19] that #r the homogeneous product sum, j together, of the whole of the
terms of h,, can be represented in terms of the symmetric functions (denoted by [ 1) of the roots of

since we have supposed that there are

x! —h,xi'1+h2xi'2—--- =0
by
(2.4) Hy= 3 (g T ittt
j St THy oM L 3Ms o s tug!

Some examples of H, are (with a;; = 0 for j > i

J 2, 2
H? T gyt Qg *0pe0n
Hg = “;1 “" *2“21 22 37 U2 % agz ’
Hg = ‘121 “"gz *2“31‘132 *“21 a22+“27a§2 +205, 4 22 +2a21 22 .
Hé = H?”f = df, +d G0 365, 05 +2‘127a22+2a21agz .
H3 = ag1 +ag, 703, a 32 +303, 0,y + 30,05, +6a, a a3, +6a3, a5,

h,, is the homogeneous product sum of weight m of the terms of P;y. H is the homogeneous product sum of
weight m of the terms of A,;.
(- 7)/+7P,~j is the product sum, j together, of the terms of P;;.
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(- 7)/”/? is the product sum, j together, of the terms of R, ;. It follows directly from Macmahon [5, p. 4] that

i A
P = Z (—7)T#EN (2! msm

iMoo - N:f m
i A7/ ?\/. =1
and so
u - 22~_ - Ay No! - )\j.’ _ m
nA,=j m=1
For example,

R37 = Hy = ag, + 0222 + aysa22 ,
7
_ 2 _ 4 3 2 2
R3p = =H3+Hy = ~(Za5, +2Ta5,0y, + 345,055 )
7 2
+(Zag, + Tag,ayy + 203,05, )
- 3 2 2
= —2a37a5, — 2a3,05; .

_ 3 _ 3 3
R3z = H3 +Hy—2HyH; = a3105; .
7T 3 27

We can verify these results by utilizing some of the properties of the generalized sequence of numbers f w(2) }
developed by Horadam [3].
From Eq. (27) of Horadam's paper we have that

2
25) WP w2y w2 = (22,
where 5 5
e = Pyl wi? + Py —wi?” -
Thus 2
w2 wiZs —wlZy = (—Pyp)" e
and ,
(2.6) PoowiZ) 'Pzzwfaz-)rwlgﬁ = (~Pyp)" e,
Subtracting (2.5) from (2.6), we get
2.1 Pog2y + w2, = Py, w2 + wiPwlZ,
But
2
w2 —popul?, = Pywl?,
and
2, (2) _ (2)
wiZ = PowlZy = Pyyw)
¥ (2%
W,(,2)+P§2W(-/2 — 2Pyl wi2, = P2
and

2 2
(2) (2} (2) ( 2) - (2]
PagwiZy +PogwlZy — 2PowiZywiZy = P Pow Py
Adding the last two equations we nbtain 5 5
2 2
i+ PogwyZy *Pzzwr% +P3pwy 2’ h = 2PoglP g0 ZwiZs+ WP 2 b )= P3y wiZy +P5iPopwiey

Combining this with (2.7) we then have



284 EXPLICIT EXPRESSIONS FOR POWERS OF LINEAR RECURSIVE SEQUENCES [ocT.

2 2 2 2
(2P _ ;p2 (2) 2, p2 (2} 3, (2)
(2.8) w,= = (P3y # PoglwyZy # (P + P31 Popl Wy +(—Poow,5
SO
_ p2 _ 2 ,.2
R31 = P37 +Pyp = a3; +a3y+ap7a5; ,
_ _ 3 3 2 2
2 = Pop#PagPoy = —057 055 — 01055 —a3403;,
_ p3 _ .3 3
R33 = —P35 = aza3; .,

as required.

To obtain an expression for H, intermsof a;, we now use a result of Macmahon, namely,

Ij 4
] = (_”r(u+1)0u ,
where o, denoctes the sum of the ¢™' powers of the roots of g,{x) = 0. 1t is sufficient for our purposes to state
that Macmahon has shown that o, is the homogenecus product sum of order r of the quantities a,-‘j. it is thus

m

th

given by ut
= Z I a;,
by analogy with Itsr m
- 22 Taen .
Zt=r m

the homogeneous product sum of order r of the quantities ajj. We now define o0;,, the homogeneous product
sum of order r of the quantities a“; such that aj =0 for j>i:

ZH”VI )

Zv=r j=1

if

and we introduce the term
- rlutij
= /_.7} oiu

Oiur
We have thus established that for

u
o
DR
j

mER (SN Am
(2.9) = 2 (1) T T H,H,’n .
=

Lnkg=f
where
' r(3U+5iigt ) (o,u,}“"
He = > (1)
m Znfly=m v=T7 l/‘ Ve
and

¥
uv;
Ojur © (—1)rlut?) E I ay’ .
and Zv=r j=1

”___.(i+r—1)
r

It is of interest to note that another formula for a,-u, can be given by

2.9) Ojur = (- 7)’(“+7’Zaf'+f- / AR
P
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We prove this by noting that

i
Ojy = Z I al;jvj = (- 7)r(u+1) Oiur
Zv=r j=1
and defining

i
s vi
hy = E Haijf-

Tv=r j=1
and showing that

i

Fa- jtr~1

hy = E ag '/ I (a,j—a,-k) .
j=1 >k

It follows from Macmahon [5, p. 4] that A, satisfies a linear recurrence relation of order / given by

i
bp =Y Pighfen, 1 >0,
n=1

hf =1, r=20
hr =0, r<a0;

the P; and q; are those of (2.1). We again assume that the a;, are distinct so that from Jarden [4, p. 107]

i

(2.10 hi =3 diDi/D

=1
where O is the Vandermonde of the roots, given by

i
(2.11) D=3 a" M Aam-apn) = T (aj—a;) T (am-a,)
=1 j#En+m i>n j#Fn#m
n<m n<m

285

and [J; is the determinant of order / obtained from 0 on replacing its /'th column by the initial terms of the

sequence, hp, h%g, - hi-y. It thus remains to prove that

(2.12) pj=di' T (am—a) = na;';/ I (a;-ap,) .
j#En#m i>n
n<m

We use the method of the contrapaositive. If
Dj + a;']77 n (ap,-apl.

J#EnF+Fm
m >

D = zl:Dj
=1

then

(from (2.10) with n=0)

i
j~1
* Z 7l I (ajm—ap)
=1 J#FEn#Fm
m>n
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which contradicts (2.11). This proves (2.12) and we have established that

Y -Z o 0;/D = }:a'*"-’a /Dd" = 3 ol / Nl (- a,)

as required. =1

3. GENERATING FUNCTION FOR SEQUENCE OF POWERS
Van der Poorten [6] further proved that if

(3.1) wix) = 3 wix" = fixd/x'slx?),
n=0
then there exists a polynomial 7.(x) of degree at most v — 7, such that
(3.2) wll e = o ), u= (7] )
We first seek an expression for 7.(x).
wx) = wh’ I L S u-7+wm’ uy
R, pwx) = —R, Wi x- R, W;' X2 —Hu7w,(,’f‘ -R, W"’,X -
—R,2x w(’}(x) = -R, w“ 2_ -R, w(’} -R, w{”
—Ru,u-IXU-IWI{i)(X) = "ﬁu,u-1wt(7/) x4 Hu u-IW;l) “-
(i)g,) = (i)’
=Ry x"w,"” (x) = =R, wy" x" -
We then sum both sides of these equations. On the left we have
u ) u
W’(i)(X) I_Z Huixj> _ W,(”(X}XU xY _Z Hujx—(u-ﬂ> = W,(’}(X)x”g,(x”),
- =1
as in van der Poorten.
On the right we obtain
(3.3) flx) =3 Tux!
where =0
(i)’ _
7-uj Z Rumwim . RuO =0,
since

(l} ﬂ_ZHUI r('l-}l n_
Thus we have

u-1
(3.4) wi(x) = (Z gwj(” Z RyumW ,(_'f,, g >/x"y,(x'1).
=0

We now show how (3.4) agrees with Eq. (33) of Horadam [3] when /=2 and r=2 We first multiply each side
of the equation by x3y2(X'1).
The left-hand side of (3.4) is then

X3y2(X—1)W£2)(X} = (—7(P§1 +P22)X - sz +P§1P22)X2+P‘2?2X } {2}()()
= (1+Pyoxl1 — (P2, + 2P 5p)x + P2 x? Wi (x) .
When /=2, the right-hand side of (3.4) is
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2

2 2
Z Zf,’gm I{°2f:1 M/g-?} +w;2) (2) X2 H W{2}X —H W{2)X2—R W(2} X2
=0 J 2 2 2
= Wgz) +w§2) xX+P ,W;Z) x2+P§2w(2} X +2P2,P2 W62W;2) 2
2 2
——P21W(l X —=Pyo W(ZI X—P2 W(2} X ~P w(zl x2

—-P2 Wrz} - P21 2W52) X
= (7+P22x)wl$2 -(7+P22X)(P21W(2} ;2)} X

2 2 (1+Poyox)
— 2xlPo s ) £ P 2 _ (2 22
X(F29Wo ™~ Wy 22W0 wy (1% Pgy)

]

(1+ P22x)(w52’2 —x(Pywi - W;ZI) — 2xew/ (~Py,x))

(since wy(—Poox) = (1+Pypx)7").

This agrees with Horadam's Eq. (33) if we multiply that equation through by (7+Po5x/ and note that ag, +dpo
= P27' +2Py,. When r=1, weget u=i, A;,=P; . If weconsider the special case of { w( }

w,g” =0, n<20
wil = 2 n=20
w,g’) = EP”W,,(’_), n >0,

then { w,g” } = ium}, the fundamental sequence discussed by Shannon [7], and (3.4) becomes

3 ] n_1 . - - -
u(i)(x) - 32 3 ul? Zplm”j(—ling fg / ng(x-1} - ;u‘g}+z (Ul-m—llj(l)))(! )g/{lg(x—”
=0 F1

itr—1
r

= 1/ g(x }, where n= (

’

which is effectively Eq. (1) of Hoggatt and Lind [2]. (Equation (2) of Hoggatt and Lind [2] is essentially. the same
as Eq. (2.4) of Shannon.) ,

Thus in (2.9) we have found the coefficients in the recurrence relation for { w,g"} } and in (3.4) an explicit ex-
pression for the generating function for { w,g"}r

Thanks are due to Professor A.F. Horadam of the University of New England for his comments on drafts of this paper.
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