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1. i iTRODUCTlOi 
In a series of papers, Horadam [8 ] , [9 ] , [10], [11] has obtained many results for the generalized Fibonacci 

sequence \Hn> defined below, which he extended to the more general sequence j Wn(a,b;pfq) \ in [12], [13]. 
Additional results for the sequence \ Hn >, which we concentrate on here, have been obtained by, among other 

authors, Iyer [14], and Zeitlin [20]. Some of the results in §5 have been obtained independently by Iyer [14]. 
It is the purpose of this paper to add to the literature of properties and identities relating to j Hn > in the ex-

pectation that they may prove useful to Fibonacci researchers. Further material relating to properties of j Hn \ will 
follow in another article. 

Though these results may be exhausting to the readers, they are not clearly exhaustive of the rich resources 
opened up. As Descartes said In another context, we do not give all the facts but leave some so that their discovery 
may add to the pleasure of the reader 

2. A GEiERATlOi OF Hn 

Generalized Fibonacci numbers Hn are defined by the second-order recurrence relation 

(2.1) Hn+2== Hn+1 + Hn (n>0) 
with Initial conditions 
(2.2) H0 = q, H1 = p 
and the proviso that Hn may be defined for n < 0. 

(See Horadam [12] J 
Standard methods (e.g.. use of difference equations), allow us to discover that 

(2.3) Hn = -l—[uf-mPn 

2y/S- X 

a =
 11 y/s. p - LZL>^E (roots of x2 - x - 1 = 0), so that 

2 ' 2 

a+@ = 1, a/3 = - 7 , a-($= <Js, 0 = -a~l ; 

(2.4) \ s. = 2(p- q(U, m - 2(p - qa)e so that 

n + m = 2(2p -q), 2-m = 2q^/s and 

%&m = p2 -pq -q2 = d (say). 

It is well known that/7 = 1,q = 0 leads to the ordinary Fibonacci sequence j Fn^, while/? = 2q = ~1 leads 
to the Lucas sequence \Ln^. 

Following an analytic procedure due to Hagis [5] for generating the ordinary Fibonacci number Fn, we pro-
ceed to an alternative establishment of (2.3). 

Put/?n = / / n + 1 . Let 

where 

*Part of the substance of an M. Sc. Thesis presented to the University of New England, Armidale, in 1968. 
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(2.5) h<x> = Z V 
n=0 

= h0 + hxx + h2x
2 + ... + hnx

n + ... 

= MO) + h'<°)* + h"M*2 + ~ + h[n)(Q)xn , i . (n) / / i i . n 

using a Maclaurin infinite expansion. 
With the help of (2.2) one can obtain the generating function 

(2.6) h(x) 

Introducing complex numbers, we set 

(2.7) 

p + q* 
1 -x -x2 

1 - z - z2 

where h(z) is an analytic function, whose only singularities are simple poles at the points 

- / - N / 5 . 
~2 " - ~a ar,d 

-1+s/5 
= ~$ 

corresponding to the roots of the equation z2 + z - 1 = 0. 

From (2.5), in the complex case, it is clear that 

(2-8) * „ - ^ 

on comparing coefficients of zh-

One may follow Hagis, appealing to Cauchy's Integral Theorem and the theory of residues, or argue from 
(2.7) that, after calculation, 

whence, on differentiating n times, 

(2.10) h<">(z) - - L - l *n!
 +1 + (=!&$, \ 

so that 

(2.11) h(n)(0) -J—\*d>+1-mF+1\ 
2sf5 

from (2.8) from which follows the expression for Hn+ / . 
Of course, if we wish to avoid complex numbers altogether, we could simply apply the above argument to (2.6) 

instead of to (2.7). 
3. GENERALIZED "FIBONACCI" ARRAYS 

Consider the array (a re-arrangement and re-labelling of Gould [3]) : 

Row\Col. 
0 
1 
2 
3 
4 
5 
6 
7 

0 

P 
P 
P 
P 
P 
P 
P 
P 

1 

q 
p 
p. 
p 
p 
P 
p 

2-

q 
p + q 

2p + q 
3p + q 
4p + q 
5p + q 

3 

„ 

q 
p + q 

2p+-q 
3p + q 
4p + q 

4 

q 
p + 2q 

3p + 3q 
6p+4q 

5 6 

q 
p + 2q q 
3p + 3q p + 3q 

7 •• 

q 
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Letting Cj (j = 0, /, 2, - , n, —) be an element of this array, where the superscript refers to rows and the sub-
scripts to columns, we define the array as in Gould [3] by the conditions: 
(3.1) C$=Cl= p, C] = q 

(3.2) Cf = 0 if / > / ? or j<0 . 

(3.3) Cf+1 = C}1, + LtI=!JL Cf if n > 7, J > 0. 

The row-sums are given by 

n 

(3.4) SJp,q) = YJ tf (n > 0) 
1=0 

=pFn+1+qFn = Hn+1 

by Horadam [8 ] . Thus the row-sums of this array generate the generalized Fibonacci numbers. As indicated in 
Gould [3] the given array generalizes two variants of Pascal's triangle which are related to Fibonacci numbers and 
to Lucas numbers. 

It may easily be verified that 

(3.5) Cn
2k = ( " - £ - ' ) /»+( n ; V ) q 

(3.6) C&H= (n-k
k-

2)p+ ["-k
k-l2) 1 

so that 
n [n/2] [(n-1)/2] 

0-7) E C?= Ts°2k+ E C&+1 
j=0 k=0 k=0 

= Mn+1 > 
as expected (cf. (3.4)). 

Similarly, we can show that 
n 

(3-8) YL(-VlcJ = Hn-2- n > 2 . 
j=0 

If we define the polynomials 
{cnM\ by 

n 
(3.9) CnM = YiC?xJ, 

j=0 
then we have on using (3.5) and (3.6) that 

[n/21 I, x i , ) 
(3.10) cnM= Z{ (n-k

k-')p+(nj!L7')'i\** 
k=0 X ; 

Un-1)/2] n-n/zj , \ 

k**0 l 

where it can be shown, as in Gould [3 ] , that the polynomial Cn(x) satisfies the simple recurrence relation 

(3.11) 2Cn+1(x) = (2x + 1)Cn(x) + Cn(-x) 

on using (3.3). Similarly, it can be shown that Cn(x) satisfies the second-order recurrence relation 
(3.12) Cn+2(x) = Cn+1(x)+x2CnM . 
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It may be noted in passing that certain properties of an array involving the elements of \Hnt are given in Wall [19]. 

4. 6E1ERAL1ZED FIBONACCI FUNCTIONS 
Elmore [1] described the concept of Fibonacci functions. Extending his idea, we have a sequence of generalized 

Fibonacci functions | Hn(xj I if we put 

H-,(x) = H'0M 

H„M = H(
0

n> (x) = -J—1 atfe** - mfe**) 
2^/5 

so that we have 
(4.2! Hn+2M = Hn+ j (x) + Hn (x) 

Obviously, 

HofO) = q = H0, Hj(O) = p = Hj 
H2(0) = p+q = H2 , - , (4.3) 

etc., and 
(4.4) Hn (0) = -L-\toP-mir\= H„. 

2sJ5 ( 

We are able to find numerous identities for these generalized Fibonacci functions, some of which are listed below for 
reference: 
(4.5) Hn.iMHn+1M-H%M = (-1)ndex 

(4.6) Hn_ j (x)FrM + Hn MFr+ r(x) = Hn+r(2x) , 

where the Fn(x) are the Fibonacci functions corresponding to the fn(x) of Elmore [1]. Similarly, 
(4.7) Hn_ t (u)Fr(v) + Hn (u)F,+1M = Hn+r(u + v) 

(4.8) Hi 1 (x) + H*(x) = (2p - q)H2n-1 (2x) - dF2n. 1 (2x) 

(4.9) H%+ j M - Hi j (x) = (2p - q)H2n (2x) - dF2n (2x) 

(4.10) H*M + H3
n+1 (x) = 2Hn(x)H2

+1(x) + <-1)ndexHn.7(x) 

(4.11) Hn+1.r(x)Hn+1+r(x) - Hi+1 (x) = (-1)n-rdexF? 

(4.12) HnMHn+i+rM ~ Hn.s(x)Hn+r+s+1(x) = (-1)"-sdexFsFr+s+1 • 

We note here that (8) to (14) of Horadam [8] are a special case of (4.5) to (4.12) above, since, as we have already 
shown in (4.3) and (4.4), the generalized Fibonacci functions become the generalized Fibonacci numbers \Hn\ 
when x = 0. 

As in Horadam [8], we also note that (4.5) is a special case of (4.11) when r = 1 and n is replaced by n - 1. 
I fweputr = fl in (4.11) we have 
(4.13) HtMH2„HM - Hln(X) = dexFi . 

Corresponding to the Pythagorean results in Horadam [8], we have, for the generalized Fibonacci function Hn(x) 

(4.14) 12Hn+ j MHn+2(x) \2+{Hn MHn+3M } 2 = { 2Hn+, (x)Hn+2(x) + H^(x) } 2 

from which we may derive (16) of Horadam [8\, for the special case when x = 0. 
The above identities are easily established by use of the formula for Hn (x) given in (4.1) with reference to the 

identities 
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/ + a2 = cujs , l + f= -frsjn , 
a$ = -1 , %9m = d 
ar = 2 + y/ii, 1 + or = 2 or , 

2a+$ = a2
 r 1 + a= a2 

a+($= 1 , n(2p-q)-2d = 1A22 , etc. 

Asin Elmore [1 ] , we can extend this theory of generalized Fibonacci functions to generalized Fibonacci functions 
of two variables to give a function of two variables, thus: 

(4.16) <po = (pfx,y) = T ) H,(x) £•' = H0(x) + Hf(x)y + H2(x) *— + - . 

Differentiating (4.16) term-by-term gives 

i=1 i=0 
(4.17) 

i7 = lLHi+i(xj fr 

(4."l8) ^ = ^ ° . 
dx dy 

Similarly, we can verify that all higher power partial derivatives are equal, so that if we denote the kth partial 
derivative by 0^# we have 

oo oo 

(4.19) <t>k = -£^s = £ "k+iM £ - = £ »K+i<y> TT . 

where r and s are positive integers such that r + s = k. Noting that 

(4.20) 4>k(x,0) = Hk(x), 4>k(0,y) = Hk(y). <l>k(0,.0) = Hk , 

we can expand <j>k(x,y) as a power series of the two variables x and y at (0,0) so that we have 

<Pk(x,y) = h(0,0) + 4>k(o,o) <pk(o,on 
dx ¥ by J 

(4.21) +2! L " dx2 
1 r ..2 *2<l*(o,o) +?xv *2<t>k(o,Q) ll.2s2<pk(o,o)'\r 
>!l zx2 ™y by2 J 

= Hk+Hk+1i^yi+Hk+2(^f£ + ... 
so that 

(4.22) ftfcW - Hk(x + y) - cJLJL__^|p 

5. GENERALIZED FIBONACCI MUIVIBER IDEWTiTSES 
Many other interesting and useful identities may be derived for the sequence \Hn\ using inductive methods or 

by argument from (2.1 h We list some elementary results without proof: 
(5.1) H.n = (-Dn[qFn+1-pFn] 
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n 

(5.2) 22 Hj = Hn+2~H1[= Hn+2-p] 
1=0 

n 

(5.3) £ H2H = H2n-H„2[= H2n + (p-2q)] 

i=0 

n 

(5.4) 22 H2i = H2n+1 - *Lf [= H2n+1 -(p- q)J 
1=0 

2n 

(5.5) 22 (-Vi+lHi = 'H2n-1 +P ~ 2q 
i=0 

n 

(5.6) 22 H? = HnHn+1-q(p-q) 
1=0 

n 

(5.7) £ ///,- = (n + 1)Hn+2 - Hn+4 + H3 

i=0 

(5.8) Y, (")"• = »2n 
i=0 

n 

(5.9) 22 ( / ) H * = 2"H2n 
i=0 

n 

(5.10) 22(1 )H4i = 3nH2n . 
i=o ' 

The three summations (5.8), (5.9) and (5.10), which are generalizations of similar results for the ordinary Fibonacci 
Sequence \ Fn I as listed in Hoggatt [ 6 ] , may all be proved by numerical substitution as, for example, in 

s(;)»»-i£|'S(;K-s(;H 
i=0 I i=0 i=0 ) 

2\J5 

- ^{m2"-mf"\=2"H2n . 

Some further generalizations of identities listed in Subba Rao [17] are: 

n 

(5.11) J2 H3i'2= 1/2(H3n-H-3> 
i=0 

Proof: Using identity (3) of Horadam [8 ] , viz., 

2Hn = Hn+2 - Hn„<i , 
we have 
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2H_2
 =

 HQ— H„3 

2H-] = H3- H0 

Adding both sides and then dividing by two gives the desired result. Similarly, 

n 

(5.12) £ H3h1 = V2(H3n+1-H_2) 
1=0 

n 
(5.13) 22H* = MH3n+2-H-1). 

1=0 

Some additional identities corresponding to formulae for the sequence \Fn\ in Siler [16], are 

n 
(5.14) £ H4h3 = F2(n+1)H2n„3 

=0 

n 

(5.15) ] P H4h1 = F2(n+1)H2n-l 
1=0 

n 

(5.16) 22 H4h2 = F2(n+1)H2n-2 
1=0 

n 

(5-17) J2 H4i = F2(n+1)H2n • 

As in Siler [16], identities (5.4) and (5.11) to (5.17) suggest that we should be able to solve the general summation 
formula 

n 

< 5 - 1 8 » 22 H*hb • 
i=i 

Proceeding as in Siler [16], we have: 

M 2yJ5 { M i=i ) 

_ (-DaHan.b - Ha<n+1hb - (-1)aH.b + Ha.b 

<-1)a+1-La 

on using the fact that 

£ aahb - aa~b [1 + aa+- + a("-1,a] = aa'b ^—^ 

i=i aa-1 

with a similar expression for the term involving j3. Here it should be stated that Siler rediscovered a special case due 
to Lucas in 1878. 

The identity (5.19) below which arose as a generalization of the combination of (2) and (3) of Sharpe [15], may 
be established thus: 
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(5.19) H n+2k+1 + H n+2k = H2k+1H2n+2k+1 + H2kH2n+2k 

Proof: 

20(H2
n+2k+1 + H2

n+2k) = (mn+2k+1 - mf$n+2k+1)2 + (m"+2k - mBn+2k)2 

= z2a2n+4k+2 + m2p2n+4k+2 + i2<]2n*4k + m2&2n+4k _ gd(ap}n+2k fJ + ^ 

= 92a2n+4k+2 + m2$2n+4k+2 + s.2a2n+4k+m2$2n+4k 

20<H2k+iH2n+2k+1+H2kH2n+2k) = i2a2»+4k+2 + m2B2"+4k+2 + *2a2n+4k
+m

2B2n+4k 

-Rm(aB)2k+1 [a2n + B2n]- m(aB)2k[a2n + B2n] 
= z2a2n+4k+2 + m2B2n+4k+2 + 9.2a2n+4k + m2B2n+4k . 

In an attempt to generalize those identities found in Tadlock [18], involving the Fibonacci sequence \ Fn\
 ar |d 

the Lucas sequence j Ln J we have 

(5.20) F2i+l\(Hk+j+i+H2-j) 

Vr00f'' H2 +H2 _ f mk+'+1 - mBk+J+'~\2
 + \mk-i-m&k-n2 

Hk+i+i+»k-i-\_ Jfi-f J + |_ 2(a -% J 
_ z2a2k+1(a2i+1+a2>-1 + m2 B2k+1 (B2i+1

 + B'2''1) 
4fa- S)2 

2d(aQ)k+I[aB+(cSr2i] 
(a-S)2 

_ (a2'+1 - B2>+1)(z2a2k+1 - m2B2k+1) 
(a-Q)4(a-B) 

since 

i.e., 

i.e., 

a2>-l = -B2'+1 

pr*-' = -a2'*1 

2 2 o.2a2^+^ — m28* 
Hk+j+1 + Hk-j = F2j+1 ' % a_o 

2_„_^u2 F2j+1 I (Hk+j+l + Hk-j^ 
Also, 
(5.21) 2[2H2+(-1)nd]2 = H* + H*+1 + H*-1 • 

This identity which is a generalization of Problem H-79 proposed by Hunter [7]., may be solved as follows. From 
the identity (11) of Horadam [8 ] , we have 
(5.22! 2[2H2+l-1)nd] = 2[Hn„1Hn+1+H2]2 

Now, 
(5.23) H4 + 4H2Hn„1Hn+1 + 2H2

n„1H
2
+1 = (Hn+1 - Hn^)4+ 4(Hn+1 - Hn^)2Hn^Hn+1 

on calculation, so that (5.21) follows from (5.22) and (5.23). 
Two further interesting results are obtained by considering the following generalization of Problem B-9 proposed 

by Graham [4 ] . From 

Hn-1^n+1 Hfl„1HnHn+1
 Mn-1HnHn+1 ^n-1^n HnHn+1 



1974] SOME ASPECTS OF GENERALIZED FIBONACCI 1UMBERS 

we have, on summing both sides over n = 2, —,-°° 
oo 

(5.24» y ; 

Similarly, from 

we have 

_0 Hn-iHn+1 ptp+q) 
n=z 

Hn _ Hn+i~ Hn„i __ / 
Hn-1Hn+1 ^n-1^n+1 Hn-1 Hn+1 

,5!5' £ HZ*. 
= M+JL-

0 ~fn-lH„+i P(p+q) 

6. RECURRENCE RELATIONS FOR \HHA 

If we define a sequence | Gn I by Gn = HH , and define | Xn \ and j Yn I by Xn = Fnn and Yn = L 
then we may verify that 

(6.1) Gn+3 = Gn+2Yn+i ~ (-ffn+1Gn . 

which corresponds exactly with (1) of Ford [2 ] , and that 

(8.2) 2Gn+3 = Gn+1 Yn+2
 + Gn+2Y„+i - (~1)Hn+1 H0Yn 

corresponding to (5) of Ford [2 ] . 
If we now define the sequence \Zn\ by Zn = HH +j, then 

( 6 . 3 ) , l • • ) 

H H 
where Rn = a " (and Sn = |3 " ) for convenience. 

•• Zn+2 = z-jf { &aJRn+2-mPJSn+2} 

{GA) =-L= {*a>Rn+1Rn-mVSn+1Sn\ 

since Rn+2 = a n+2 = a n+1 a " = /?„+//?„, and similarly for Sn+2 . 

••• Zn+2 = zjjr { Rn<za! Rn+1 - m$>Sn+i) + Sn+i(mi Rn-m&Sn) 

. ; - RnSn+1(m>-m$i) | = RnZn+1 +Sn+-,Zn - RnSn+1Hj 
I.e., ' 

H 
(6.6) Zn+2 = RnZn+1 + Sn+ iZn-(-1) Sn„ / Hj 

RnSn+1 = < / V " + ? = (a&)H"$H"-1. 
Similarly, H 

16.7) Zn+2 = SnZn+1 + Rn+1Zn - (-11 nRn-iHj . 
Adding Eqs. (6.6) and (6.7) gives 

(6.8) 2Zn+2 = Z^fRn+SJ + ZnfRn^+Sn+O-hV^HjfR^+S^) 

L e " Hn 

Si l lC8 H H 
Rn + Sn = a " + /J n = LHn= Yn 

i.e. 
(6.9) 2Hu+2+j = LuHH^+LH^Hu^-f-D^LH^Hj 
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which is a generalization of (14) of Ford [2 ] . 
One can continue discovering new generalizations ad infinitum (but not, we hope, ad nauseam!), but the time has 

come for a halt. 
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