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H-239 Proposed by D. Finkel, Brooklyn, New York. 

If a Fermat number 2 + 1 is a product of precisely two primes, then it is well known that each prime is of the 
form 4m + 1 and each has a unique expression as the sum of two integer squares. Let the smaller prime be ar +b , 
a >b; and the larger prime be c +d , od. Prove that 

k -£ i < j _ 
\d b\ ^ 100 ' 

Also, given that 
•2* + 1 = (274, 177H67, 280, 421, 310, 721), 

and that 
274,177 = 5162 + 892, 

express the 14-digit prime as a sum of two squares. 

H-240 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Let 
min*Sf} 0miHn-i)(p-i) 

S(m,n,p) = lq)n(q)p ^ fefr^V/ " 

where 
(q)j = (1-q){1-q2)...tT-q'), (q)Q = ' -

Show that S(m,n,p) is symmetric in m,n,p. 

H-241 Proposed by R. Garfield, College of insurance, New York, New York. 

Prove that 
n-1 

-L-'1-Y. 2kix . 
k=0 — i 

1-xe n 

SOLUTIONIS 
GEE! 

H-207 Proposed by C. Bridger, Springfield, Illinois 

Define G^fx) by the relation „ Q 
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2
1
 2 3 = E Gk(xhk., 

1-(x2+1)s2-xs3
 n=0 

where x is independent of s. (1) Find a recurrence formula connecting the Gk(x). (2)?\xtx=1 and find Gk(1) in 
terms of Fibonacci numbers. (3) Also with x = 1, show that the sum of any four consecutive G numbers is a Lucas 
number. 

Solution by the Proposer. 

After carrying out the indicated division, we find 

GQ(X) = 1, G7M = 0, G2(x) = x2+ 1, G3(x) = x, G4(x) = (x2+1)2, 
etc. 

(1) Assume the recursion formula of the type 

Gk+sM = pGk+2M
 + qGk+1(x)+rGk(x), 

and put k = 0, k = 1, and k = 2. The solution of the resulting equations gives p = 0, q-x+ 1, and r = x. So the 
recursion formula is 

Gk+jM = (x2 + 1)Gk+1(x) +xGk(x). 

(2) Put x= 1 to obtain 
@k+3 = 2®k+l + Gk • 

This has the characteristic equation z ~2z~ 1 = 0, whose roots are 

a = l±f., b-Lzj£, c--1. 
Mow, 

ak -bk 

VF = Fk > S0 Gk'1) = fk + (~1)k • 

(3) Use Fk+1 + Fk„<i = Lk and Fk+2 + Fk = Lk+1, replace F by G and add to obtain 

Gk+2 + Gk+1 + Gk + Gk„<i = Lk+2 . 

Also solved by G. Wulczyn, P. Tracy, P. Bruckman. 

BOUWDSFOR A SUM 

H-208 Proposed by P. Erdbs, Budapest, Hungary. 

Assume 
, ; , (a/>2, 1<i<k), 

af.a2l—akl 
is an integer. Show that the 

k 

maxY^ ai < - n , 

1=1 

where the maximum is to be taken with respect to all choices of the a/s and k. 

Solution by O.P. Lossers, Technological University Eindhoven, the Netherlands. 

From the well known fact that the number cp(m) of prime factors p in m! equals 
m 

(fxj denotes greatest integer in x), it follows that 

Lp2J 

' 1 
m 

P
3J 

c2(2) = c2(3) = 1, j < c2M < m (m>4) t3(m) < 1-m (m > 2). 
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Now writing 
afia2i-aki = (2i)0i(3lfb1i-bSiif 

where b,>4 0=1,—,9.) lower bounds for the number of factors 2 and 3 in a-/!—ak! and a fortiori for c2(n)and 
c3(n) are found to be a + P+'AUb,- and j3, respectively. So 

Say = 2a + 3$ + T,bj < 2c2(n)+c3(n) < 2n + 1-n = jn . 

/I/so s0/i/e</ #/ V. £ Hoggatt, Jr. 

SEARCH! 
/A200 (Corrected). Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 

"" £_£ 
where a + (3= a/3 = z determine the coefficients CY/7>,/ such that 

A7 

Z n - 22 C(n>k)Un-k+1 (n>U. 

Solution by the Proposer. 

It is easily verified that 

Put 

Since 

k=1 

Z = Iff 

Z^ = l$2 + Uf 

z3 = u3 + 2u2 + 2u<i 

z = U4 + 3U3 + 5u2 + 5u-\ 

z5 = u5 + 4u4 + 5u3 + 14u2 + 14u 1 

zn = J2 C(n,k)un„k+1 

k=1 

nk+1 Rk+1 nk+2 ak+2 nk ak 
(a+&uk = (a+$) a

 a " P - « — a - q f — +00 ^ j - = uk+1 + (a + P)uk„i , 

it follows that 
(a + $)uk = ui + u2 + ~+uk+1 . 

Hence 
n n n-k+2 n+1 n-J+2 n+1 J 

zn+1 = 22 C(n,k)(a+$)un„k+1 = 22 C(n>k) 12 ui = J2 ui 12 C{n>k} = 12 u*H+2 22 MM-
k=1 k=1 J=1 j=1 k=1 j=1 k=1 

It follows that C(n,k) satisfies the recurrence 
k 

C(n + 1,k) = 22 cfn'k) • 
1=1 

The first few values are easily computed (1 < k < n < 5). 

1 
1 1 
1 2 2 
13 5 5 
1 4 9 14 14 . 
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Thus C(n,k) can be identified with the number of sequences of positive integers (a-j, a2, - , an) such that 
( a1 <a2 < - < an 

\ a; < / (i = 1, 2, -, n) . 

It is known (see for example L. Carlitz and J. Riordan, "Two Element Lattice Permutation Numbers and Their q-
Generalization," Duke Math. Journal, Vol. 31 (1964), pp. 371-388) that 

w- (-;^2)-(";-"/) 
LUCAS CONDITION 

H-210 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Show that a positive integer n is a Lucas number if and only if 5n2 + 20 or 5n2 - 20 is a square. 

Solution by the Proposer. 

I. (a) Let n = L2m+i 

5n2 + 20 = 5(a2m+1 + $2m+1)2 + 20 = 5[a4m+2 ~2<*V2m+1 + $4m+2l = 25F2
2m+r 

(b) Let n = L2m 

5n2-20 = 5(a2m + $2m) -20 = 5[a4m - 2(ap)2m + $4m] = 25F%m . 

II. s2 = 5n2 + 20. 

(a) One solution chain is given by the rational part (for s) and the irrational part (for n) of 
(5+y/5)(9+4y/5)t, t= 0,1,2, ». 

with the irrational part also identical to l-Qt+i. Let 

(5 + s/5)(9 + 4^s)t = st+L6t+1^5 , s? = 5L2
6tH+20. 

(5+sj5)(9 + 4<s/5)t+1 = 9st + 20L6t+1 + y/S(9L6t+i+4st) . 

9L6th1+4yj5L\m +20= 9L6t+1+4^5(*^ - pS^T = 9L6t+1+20F6t+7 

L6t+7 - a ^ + f^7 = a6t+1(9 + 4^f5) + ft+1(9-4sj5) 

= 9L6t+1+20F6t+1 

(b) A second solution chain is given by the rational part (for s) and the irrational part (for n) of 
(10 + 4^/s)(9 + 4^5)t, t = 0,1,2,.« -

The proof that the rational part of 
(10 + 4^5)(9 + 4sf5)t 

is identically i-6t+3 is similar to that used in II (a). 
(c) A third solution chain is given by the rational part (for s) and the irrational part (for n) of 

(25+ 11y/sH9 + 4s/5)t
/ t= 0,1,2,- . 

The proof that the irrational part of 
(25+11sf5)(9 + 4*j5)t 

is identically L^t+s 's similar to that used in II (a). 
III. s2 = 5n2-20. 

(a) One solution chain is given by the rational part (for s) and the irrational part (for n) of 

(5 + 3^51(9 + 4^/5)*, t = 0, 1,2,- . 
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Assume 
(5 + 3slsH9 + 4^5)f = * f + L6t+25, sf = 5L2

6t+2 - 20. 

(5+3^5)l9 + 4s/5)t+1 = 9st + 20L6t+2o + -j5(9L 6t+2 + 4$t) 

9L6t+2 + 4st = 9L6t+2 + 4yjWjo^+^^+Z)'z -4] = 9L6t+2 + 20F6t+2 

L6t+8 - a6t+8
 + f

t+8 = (9 + 4jE)a6t+2H9-4sl5)b6t+2 

= 9L6t+2 + 20F6t+2 . 

(b) A second solution chain is given by the rational part: (for si and the irrational part (for n) of 

(15+7s/5)(9 + 4^5)t, t = 0,1,2,-. 

The proof that the irrational part of 
(15 + 7^51(9 + 4^5)* 

is identical to Lst+4 l$ similar to that used in i l l (a). 
(c) A third solution chain is given by the rational part (for s) and the irrational part (for n) of 

(40 + 18y/s')(9 + 4yfs)t, t = 0, 1,2, ». . 

The proof that the irrational part of 
(4Q+18sj5H9 + 4^[5)t 

is identical to Z.5f is similar to that used in III (a). 

Also solved by P. Bruckman, P. Tracy, and J. I vie. 

AAAwAAA 

[Continued from Page 368.] 

y + 1 < z < y + fx/n) 

is a necessary condition for a solution. Thus, we see that there can be no solution for integer x, 1 < x < n, a well 
known result (see [ 1 , p. 744]). Again, if y = n, there is no solution for 1 <x <n, a well known result (see [1fp. 744]). 
Our proof can also be used to establish the following general result 

Theorem 2. For n >m >2 and integers A >1, B> 1, the equation 

Axn + ByiT' = Bim 

has no solution whenever Axn~m+1 + Bmy < Bmz. 
REMARK. Theorem 2 gives Theorem 1 f o M =B and n = m, 
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