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In this note we shall consider recurrences of the form 
(1) An+2 = An+1+An , 

with initial values AQ and A-j. The special case AQ = 0, AI= 1 in (1) is the well known Fibonacci series (Fn), 
and AQ = 2, AJ=1 is the Lucas series (Ln), The integer N(A) = A\ -A0A2 is the norm (also known as the char-
acteristic number) of (1).\Nben recurrences (An) and (Bn) are multiplied (the multiplication of recurrences, which 
is defined below, was developed in [5]), we have that N(A)N(B) = N(AB). This multiplicative property is the justi-
fication of the use of the word norm. In this paper, we shall derive some basic properties of recurrences under mul-
tiplication. Our main result will be that recurrences can be factored uniquely (up to order and sign) into recurrences 
whose norms are prime. 

Let AQ = AO, A*I= AQ- Ap The recurrence (A„), obtained by using AQ and /S/ as initial values in (1),will 
be called the dual recurrence of (An), and the asterisk will be used to denote dual recurrences. The notion of dual 
recurrences was introduced in [3]. It may be shown by induction that 
(2) A*= Fn+1A*0-FnA*f. 

t(An) will denote the scalar product (taken term-wise) of an integer t and (An). If (AQ,Ai)=t> 1, we can 
express the recurrence as a scalar product t(Bn) = (An), where tBj = A; for all i. It is only necessary to consider 
such reduced recurrences. 

We define the product (An)(Bn) of two recurrences to be the recurrence (Cn) (of the form (1)) such that 
(3) C1 ~aC0 = (A7- aA0HB1 - aB0). 

where a is a zero of x2 - x = 1, the characteristic polynomial of (1) (a is adjoined to the integers, and (3) is an 
equation in the extension). It follows (see [5]) that 
(4) Cm+n = AmBn+1+Am+1Bn-AmBn , 
and 
(5) Cm+n+1 = Am+1Bn+1+AmBn . 

As stated before (and in [5]), N(A)N(B) = N(C). 
We point out that the value of N(A) changes only in sign as the starting point AQ of the recurrence (An) is trans-

lated one term at a timer the value of N(A) = A\ -AQA2 alternates in sign. This follows from the identity 
(6) (An+1)

2-AnAn+2= (~1)nN(A) , 

which may be proved by induction. Henceforth, we shall disregard the sign when we discuss the norm; we shall only 
use its absolute value. Also, the signs of terms of (An) will be disregarded in the sense that (An) and ~(An) will 
be considered equivalent. Thus, for the Fibonacci and Lucas series, we have that N(F) = 1 and N(L) = 5. 

It has been shown (see [1]) that a recurrence other than (Fn) can be translated so that |40| > \AX\, and that 
this representation is unique. For the purposes of this paper, however, we shall make no such assumption. 

It follows from (4), (5) and the definitions of the norm and dual recurrences that 
(7) (An)(A*) = N(A)(FJ = N(A *)(FnL 
Since (L*) = (Ln), it follows from (7) that 

(Ln)
2=5(Fn). 
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The sum, taken termwise, of (An) and (A„) is Ao(Ln). Of course, ((A„)*) = (An). Several identities involving 
(An) and its dual can be derived as special cases of general identities in [5]; among them are the following, which 
are generalizations of well known identities for (Fn) and (Ln). 

AnA* + N(A)F2 = f-1)nA§ , 

F2nA0 = Fn(An+K> = A0FnLn -
Using the theory of binary quadratic forms, it may be shown that distinct recurrences of norm m (where distinct 

recurrences are recurrences which are not translates or scalar multiples of each other) are in a one-one correspond-
ence with roots n of 

n2 = 5 (mod 4m) , 

where 0 < n <2m. It follows that there are recurrences with norm m if and only if fp/5) = 0 or / for aU prime 
factors p of m, and that the number of distinct recurrences of norm m is 2r where r is the number of prime 
factors/? of m such that (p/5) = 1 (i.e., p= 10k ±1). Also, it is not possible for 25 to divide the norm. These 
results may be found in [2] and [4]. In [1] there is a table of the recurrences having a given norm for all possible 
norms up to 1000. 

We remark that multiplication of recurrences with a given discriminant d (d = 5 in this paper) corresponds to the 
composition of binary quadratic forms of the same discriminant; in fact, (4) and (5) are used in the definition of 
composition of forms. 

The following theorem shows that (A„) is in a sense the inverse of (An), since (Fn) is the multiplicative identity. 
Theorem 1. X= (A*) is the only recurrence satisfying (An)X= N(A)(Fn). 
Proof. By setting CQ=0, C-j = N(A)f m = n = 0 in (4) and (5) and solving simultaneously for BQ and BJ, we 

find that BQ = Ao = AQ and Bj = Aj - AQ = -A*p Thus, if signs are disregarded, (Bn) = (A^), proving 
the theorem. 

Theorem 2. The dual map is an automorphism of the group of recurrences under multiplication. 
Proof. By (7), if (An)(Bn) = (Cn) then 

N(A)N(B)(Fn) = (An)(Bn)(A*)(B*i = (C*)((A*)(B?,)) , 

whence (Ap)(Bp) = (C^) by Theorem 1. Since the dual map is bijective, the theorem follows. 
Theorem J# Any automorphism of the multiplicative group of recurrences preserves the value of the norm. 
Roof By (7), 

(An)(A*n) = N(A)(Fn). 

Let (An)-*(A'n) be an automorphism. Then 
(A'n)(A*') = N(A)(F'n) = N(A)(Fn) , 

since an automorphism must map the multiplicative identity onto itself. Thus, by Theorem 1, (A%') =.(A'n*),so 
that 'N(A') = N(A'*) = N(A*'), and the theorem follows by the multiplicative property of the norm. 

Let S = ipi, P2, — \ be a subset of the set Q of primes which are quadratic residues of 5 and let S'= Q- S. 
Then the function T mapping recurrences onto recurrences such that 

T((A » = \ (AV i f WA)*S 
n \ (AJ if N(A)eS* 

determines an automorphism, and any automorphisraof the multiplicative group of recurrences can be so character-
ized. The proof, which uses Theorem 3 and the Unique Factorization Theorem to be proved later, is left to the 
reader. 

Theorem 4. Consider recurrences (Gn) and (Hn) such that 
N(G) = m2

1f N(H) = m2
2, (mhm2) = 1. 

Then 
(GjfHj = m7m2(Fn) 

if and only if 
(Gn) = mf(Fj and (Hn) = m2(F„). 
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Proof. Suppose m1m2(Fn) = (Gn)(Hnl Multiplying by (G*), 

mtm2(G*) = (Gn)(G*)(Hn) = m^Hj . 

Thus, 
m2(G*) = mi(Hn). 

St follows that 
m2Gf = mtHf 

for all i. Since (m1f m2)= 1, then /77/1 (?*and m2\H-,. Therefore, 

m2(G%) = mj(Hn) = m1m2(En) 
for some recurrence (En), whence 

/nf = N(G) = N(GV = NfmjE) = m^NfE) , 

so that N(E) = t It has been shown in [2] that there is only one recurrence whose norm is 1: namely (Fn). Hence, 
(En) = (FJ. 

The converse is obvious. 
TheoremS. (Unique Facorization). Recurrences of a given norm whose terms have no common divisor factor 

uniquely up to order and sign into recurrences whose norms are the prime divisors.of m. 
Proof. First we shall show that a recurrence (En) can be factored uniquely into recurrences whose norms are 

(relatively prime) maximal prime power divisors of m. St is only necessary to prove uniqueness for m = mjm2 with 
(mi,m2) = /, and uniqueness for prime power divisors follows. 

Sf N(E) has only one prime power factor or if (En) =(Fn), we are done. Otherwise, let (En) have at least two 
relatively prime factors /7?/ and m2, and assume that factorization is unique for recurrences whose norms are those 
relatively prime factors. We shall show that (En) factors uniquely. 

Since there are 2r recurrences with norm m-j „where r is the number of prime divisors p of m-j satisfying (p/5)= 1 
and assuming that (p/5) = -1 for no divisors of m-j (see [2]), and since, under similar conditions, there are 2s re-
currences with norm m2, then the set of recurrences obtained by taking products of recurrences, one with each 
norm is contained in the set of 2r+s recurrences of norm mjm2l with equality of sets if and only if any pair of 
products is distinct. Thus, we must show that if (An)(Bn) = (Cn)(Dn) with 

N(A) = N(C) = mu N(B) = N(D) = m2, (m1fm2) = 1, 

then' (An) = (Cn), (Bn) = (Dn). 
Under the conditions stated, there exists a recurrence (Gn), equal to (A%)(Cn) such that N(G) = m1 and 

(An)(Gn) = n>i(Cn}. 

Likewise, there is an (Hn) such that 
N(H) = m2

2 and (Bn)(Hn) = m2(Dn). 
Substituting these relations into 

(AJBJ = (CnHDn) 
we get 

mim2(An)(Bn) = (An)(G„)(Bn)(Hn) , 

and multiplying by (A^)(B*n) and applying (7) obtain 
m1m2(Fn) = (Gn)(Hn), 

Since (mi,m2)=1, we have that (Gn) = m7(Fn) and (Hn) = m2(Fn) by Theorem 4. Thus, 

mjfCn) = (An)(Gn) -•= mj(An), 

whence (An) = (Cn), and (Bn) = (Dn), likewise. 
Wext we show that each of the two recurrences of prime power norm pk factors uniquely into k recurrences 

of norm p. Let (An) be a recurrence of norm p. Then the only other recurrence of the same norm is (A„) and 
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no recurrence (except the identity recurrence (Fn)J has a norm dividing p. We shall proceed by induction. 
For k = 1, the theorem is obviously true. Assume truth for all exponents not greater than k. Then there are two 

recurrences of norm p which factor uniquely, and since (An) and (A%) are factorizations of the recurrences 
of norm pk, they are unique factorizations. Multiplying (An) and (A%) by each of the recurrences of norm p 
and using (7), we get the products 

(An)
k+1> W r l , (An)

k(A*n) = N(A)(An)
k-1, and (A*)*(An) = MAMA})*-', 

and the last two products fail to satisfy the requirement that the terms have no common factor. Thus, (An)
k+1 and 

(A„)k+1 are two factorizations of recurrences of norm pk+1, and they are the only two meeting the requirement 
that the terms of the product have no common factor. Since there are two recurrences of norm pk+1 (see [2]), 
(An)

k+1 and (Ap)k+7 must be their factorizations. This completes the proof. 

REFERENCES 
1. Brother U„ Alfred, "On the Ordering of Fibonacci Sequences/' The Fibonacci Quarterly, Vol. 1, Mo. 4 (Decem-

ber, 1963), pp. 43-46. 
2. T.W. Cusick, "On a Certain Integer Associated with a Generalized Fibonacci Sequence," The Fibonacci Quarter-

ly, Vol. 6, No. 2 (April, 1968);pp. 117-126. 
3. P. Naor, "Letter to the Editor," The Fibonacci Quarterly, Vol. 3, No. 4 (December, 1965), pp. 71-73. 
4. Dmitri Thoro, "An Application of Unimodular Transformations," The Fibonacci Quarterly, Vol. 2, No. 4 (De-

cember, 1964), pp. 291-295. 
5. Oswald Wyler, "On Second-Order Recurrences," American Math, Monthly, 72 (1965) pp. 500-506. 

******* 

A NOTE ON FERMAT'S LAST THEOREM 

DAVID ZEITLIN 
Minneapolis, Minnesota 

In this note, n, m,x,y, and z are all positive integers, with x <y <z. 
Theorem 1. For n > 2, the equation xn + yn = zn has no solutions whenever x + ny < nz. 

Corollary. For m> 1 and n>2, xmn+ymn =zmn has no solutions whenever V77 + nym < nz™. 

Proof Suppose xn *yn =zn has a solution with y = x + a, z - x + b, where/? >a > 0 are integers. Then, by using 
the binomial theorem, we have 

n 
xn=zn-yn = (x + h)n-(x + a)n « £ ) (^ ) f^W-d) = nxn~7(b -a) + Q(n^c,b,a), Q>0. 

i=0 
Thus 

xn-1(x-n(b-a)) = Q , 
and so x - n(b -a)>0 is a necessary condition for a solution. Since 

b - a = (x + b) - (x + a) = z-y, x - n(z-y) < 0 

is the stated result. 
REMARKS. Si nee nz <ny+x is a necessary condition for a solution and since/ <z, we see that 

[Continued on Page 402.] 


