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There is an interesting relation between series based on the powers of an integer, and infinitely repeating decimal 
reciprocals whereby the sum of the powers of a single integer give not one, but two reciprocals. Figures 1 and 2 illus-
trate this in the case of the two integers 3 and 19, which yield respectively the decimal reciprocals 1/29, 1/7; and 
1/189, 1/81. The left-hand member in each instance starts at the decimal point and develops (in reverse) to the left. 
Although it is obviously not a decimal, it is purely cyclic, and has the repetend of its decimal version. Since shifting 
the decimal by a suitable divisor rectifies this, and for the sake of simplicity, it is treated here as a decimal. 

If M is any integer having k digits, the following equations apply: 

(1) 

and 

1A10M-1) = J ] Mn~1xWn"1 

n=1 

(2) 1/(10k-M) = J2 Mn~1x10~kn 

n=1 
Equation (1) is limited by the expression (10M- 1) to a fraction having a denominator with the last digit 9, and 
will thus be odd and yield a cyclic decimal fraction having a repetend with the terminal digit /. Equation (2) is lim-
ited by the expression (10k - M) to a denominator which is the complement of M and will thus be odd, or even, 
and will not be limited as to type of repeating decimal. In the preparation of Figs. 1 and 2, zeros not contributing to 
the relations shown have been omitted. 
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Figure 1 
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GENERATING FUNCTIONS 
For the record, some results are presented here which arose many years ago (1965) in connection with the author's 

paper [3]. Familiarity with the notation and results of Carlitz [1], Riordan [6], and the author [2], [3] and [4], 
are assumed in the interests of brevity. Mote, however, that hn in [3] has been replaced by Hn to avoid ambiguity. 
Our results and techniques parallel those of Riordan. 

Calculations yield 
Mi-Mti + ttU = 2(~1)ne 

(1) 
HZ-MLi-Hi.2 = 3(-f)nBHn_f 

ft 7H^j + H*.2 = 2e2 + 8(- 1)neHl n-1 
(e = r -rs-s2) 

H' HHZ-1 "n-2 = 5e2Hn_i + 15(-1)neH^-, 

and so on. Corresponding generating functions for the kth power of Hn, 

[Continued on page 350.] 


