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1. INTRODUCTION

If p,g are integers, p‘? +4g# 0, let w = w(p,q) be the set of those second-order integer sequences
(W) = (Wo, Wy, W3, -~}

satisfying the relationship

Wy = pWn1+qWp2 (n > 2)
which are not also first-order sequences; i.e., they do not satisfy W,, = cl,,_; (¥ ,) for some ¢. In Horadam’s papers
(I31, [4], [5], [6]) our W, is denoted by W,(a,b; p,—g). In this paper we show that w can be partitioned natur-
ally into a set F' of generalized Fibonacci sequences and a set L of generalized Lucas sequences; to each F< F'
there corresponds one L € L and vice-versa. We also indicate how very many of the well-known identities may be
generalized in a simple way.

2. THE PARTITION OF w(pqg/

If a,f are the roots of %2 —px —gq =10 d=+/p* + 4g then ihe following relationships are true:
=P +d =P = d
a 5 B="55=,
a+f=p, ap = ~q, a-B=4d,
n_ ppn
(1) Wn = A_Cl(,l___——ﬁgﬁ s
where A=W; ~WpB B=W; - W,a. Since (W,) is not a first-order sequence it follows that a= 0, -0 A #
0, B+ 0 When W, isrepresented as in (1) we say that i/, is in Fibonacci form. On the other hand, with differ—
ent constants € and O, W, could be represented as
W, = ca”+0B" .
In this case, we say that W, isin Lucas form.
When ¥, is in Fibonacci form (1) we may perform an operation { ') to obtain a number W, where
Wy, = Ad" +BB" .
We say that the sequence (IW/;,/ is derived from the sequence (/). The sequence (/) is a sequence of integers
since

(2) Wo=A+B =W;—Wpp+W;—Wpa = 2W;—W0(ll+ﬁ) = 2W;—pWgo
and
(3) W3 = Aa+Bj3 = lW,—WgB)a+{'W7-—W0a)B = W,u’a+B)—2W0a6 = pWq,+2qWp.

W;, may now be expressed in Fibonacci form. In that case

w, - [Ala=p)]a" - [-Bla - 8)1 87

a—@

If we perform the operation { '} on W/}, we obtain
wy = [Ala —B)]a” + [(-B)(a — B)] B"

o (A=

= d’w, .
839



340 ON THE PARTITION OF HORADAM'S GENERALIZED SEQUENCES INTO [DEC.

We have proved
Theorem 1. wy = d?w,  forall  n >0

It is not hard to verify that the equation W, = W, (*,) cannat be true if (W/,,) is not a first-order sequence.
Throughout this paper let (X,/), (Y,) € wip,g), let X, =Y, (n=0,1,2, ) andlet Xg=a, X; = h
Then, from (2} and (3),
Yo = 2b - ap, Y; = pb+2qga.
By theorem 1, therefore, or directly, it follows that

ad? = 2Y1-pYo, bd? = pY1+2¢Yp .
The following theorem now follows easily:
Theorem 2. (i)
(4) a?| 2y, —pYy-7 and a’zle,,+2qY -7 foral n>7.
(i} 1f (W,) e wipg), u’2[2W7-pW0 and  d?|pW; + 2qWp then (W,)=(X;,) for some
(Xp)e wlp,gl
Proof of (ii). If
2W 4 — pW, W+ 2qW,
Xo = ——’;——o, X7 = p_;_z_q_o and  (X,)ewipyg),
then ) d . d /
W+ 2qW, W — pW, ‘ + -
xp=2| PWit2Wo \ _ [ Wi=pWo ) _y ang xy=p| PH1E2W0 ), 5 [ ViAW ) _ )y
d2 d2 L‘/2 d2

which proves part (ii).
The basic linear relationships connecting (X,,) and (Y, ) are described in the following theorem.

Theorem 3. The following are equivalent:

(i) (Xp) = (Yn),
(i) Y, = 2Xpe1—pX, foral n=0,
(iii) Ypiyr = pXpe1 +29X, foral nz=0,
(iv) Yo = Xpe1+GXp-q forall n=1,
2 -
(v) X, = 2Ynt1=PYn forall n>0,
d2
(vi) Xpeg = PYnt1*24Yn forall n>0,
d
(vii) x, = Yot 8t g psi.
d2

NOTE: For each of {ii), -, {vii} we need only require that the expression is true for two adjacent values of n,

Proof. ()= (il f (X;)=(Y,), thenfrom (2)and (3), Yp=2X; —pX, and Y;=pX;+q2Xp=2X2—pX;
since Xo=pX;+gXg. Let m>2 and assume (ii} is true for 0 <n <m. Then

Yin = PYm-1tqYm-2 = p(2Xim = 0 X1} + 02X i1 — pX 2] = 2Xppe1 = 0 X -

The result now follows by induction.
(i) @ (iii) < .--< (vii). This follows easily using

X7 = pXn*0Xpg and  Yory = pYptqYny (n=1).

Ii), (i), - {vii)] = i). Since
_2Yi=pYo

Y+
and X;=p—7 27Y0

Xo
d? d?

it follows from (2) and (3) that
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Xp=2 BY1+29Y0 —-p Y1 =pYo =Yg
a? \ 42
and similarly X7=7Y;. Hence (X;)=(Y,). This completes the proof of Theorem 3,
We now describe the partition of w(p,q) previously referred to:
i (W,)cwipg) and d + 1 let W,=d?" w, forall n >0, where m> 0 isaninteger, {w,) € w and
a2y ), foratleastone n >0 Then

W,)e L i d?|2w;-pwy and d?lpw; +2qwy ,
(W,) e F ifeither a’ZXZw, —pwg or d‘?*pco7+2qwg .
if (Wy)ewlpg) and d=17 let
W, e L it W;—Wpa<0,
W,) e F it Wy—Wpa > 0.

The assignment of (WW,,) to L or F is natural in the case d #7, butif d =17, although the partition itself is nat-
ural, it is not true to say that a sequence is "like” the Lucas sequence rather than the Fibonacci sequence or vice-
versa. In view of Theorem 3if (,) is a member of F (or L) then any “tail” of (W,) is also a member of F (or
L, respectively).

Theorem 4. (X,) € F ifandonlyif (¥, e L

Proof. Casel. d=1 (X,)eF

= X, = Aa” - BB", where B <0
« Y, = Ad" +Bg"
= (Y, e L.
Case 2. d #1. (i} If (X, ) e F suppose that X,,=a’2mx,, forall n =0 where m >0 is an integer,
(x,) € F and d2lx,, for atleastone n > 0. Clearly d2)xgy or d?fx;. By Theorem 3, Yg=2X;~pXp and
Y;=pX;+2qXg. Let ¥, =d°My, foral n>0. Then yg = 2¢7 —px, and y, =px;+2qx, . Since (x,) <
E either d2*2x7 —pxg or u’21"px7 +2qxg. Therefore either a’z%/yo or o *y;. But it is easy to verify that
Zv1-pyo=d’xg and py;+2a0 = d%xy.
Therefore fy,/ e L andso (Y,)eL.
(ii) If {Y,;) € L suppose that Y,=d?"y, forall n>0, where m >0 is an integer,
fv,) € L and a’zll/yn for atleast one n > @, Clearly d2*y0 or dz*yf. By Theorem 3,
X, = pY1+2qYp
d? d?

Xo:{)ﬁ*ﬂyo’

Let X, =d?7x, forall n >0 Then
yi—py py1t2qv0
)(0=—————~——720, X7=—-—————2—.
d d

Since v,/ €L, 5 5
d?|2y1—pyo and dlpy;+2qy0 .
so xg and x; are integers, s¢ (x,/ € w: But

2xy—pxg = yp and pxy;t2gxg = yq.
and since dZ}’yO or n’zj/y1 it follpws that either a’z/fZ)(, —pxg OF d2*p)(7 +2gxg. Therefore (x,)€F and
so (X,) € F. This completes the proof of Theorem 4.
Here are some examples of members of F alongside the corresponding member of L,

0,11235813 2,1,347,13 -
G1,pp°+q, 2.p,p2+2q, -
01,3715 ..,2"—-4 .. 2365817 ...,27+17, -.
61,2812 29, - 226,14, -

{Peil’s sequences)
a, b, qa, gb, 9%, g%, - 2b, 2qa, 2qb, 242, 29°b, -
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3. BINOMIAL IDENTITIES

Many identities involving Fibonacci and Lucas numbers are readily derived from the binomial theorem; for exam-
ple see [1], [2] or [8]. They can nearly always be generalized to become identities involving generalized Fibonacci
and Lucas numbers.

In this section we could derive along list of such identities; but this seems unnecessary in view of the proofs in [2]
and [8], and also it would take up a lot of space, as the constant multipliers which have to be introduced seem to
make the generalized formulae up to twice as long as the formulae in [2] and [8]. Instead we derive one set of iden-
tities as an example and show how further identities may be derived.

There often seem to be two very similar identities, one featuring Fibonacci numbers, the other Lucas numbers.
When there are two such identities they may often be derived from one identity by using the fact that 1 and /5 are
linearly independent over the rationals, although this is not the procedure adopted in [2] or [8]. With generalized
Fibonacci and Lucas numbers such a process would not be appropriate, but, as the examples show, the method of
proof which is natural does lead to a single identity, from which the two identities may be obtained by specialization.

For this section (F,,) and (L,) denote a pair of sequences such that (F,)€F, (L,) € L and (F,)’=(L,). Also,
C=F1—FOB, D=F1—Fga.

The natural method of proof is firstly to derive a single identity involving (X,) and (Y, ). Then either of the
following sets of substitutions may be made:

I Xn = Fnir

Yn = Lo+
A = X1=XoB = Fre1~FB = Ca’
B=Xi—Xoa=Frpr—Fra=08".
(The third of these follows since

£, = CaT 0™ _ (Ca’~ DB')B— Ca’B+Ca’™”
a-f a-p
and the fourth follows similarly.)
Or
1. Xn = Ln+,-

Ypn= dZFn+r
A=X;=XoB= Lrsy—Lp = Cda"
B=X;~Xpa= Lppy—Lea= —DdB" .
Then each of these sets of substitutions leads to one of the two derived identities mentioned above.
EXAMPLES OF BINOMIAL IDENTITIES

= F,g+Cd |

EXAMPLE 1. Since

g = Ym* @Xm gm = Ym—9Xm
247 28
it follows that
n . - . n . - - -
a™ = (24)7" Y A XY ( 7), and B = (28)" )" (-1)'d" X}, Y,';,"( ;’)
=0 =0

Therefore,
n .. 3 \ n .. .
Yoo+ Xy = (24)777 DA XY ( 7). and Yy —dXpm, = (28) S =1 XY ( ,n>
=0 =0
Therefore,

n ,
X = 207" 3 (dxm)")/,',’;"(;’) [AT" —(-1)BT "] .
=0
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A similar formula may be derived for Y, .
Making the first set of substitutions, we obtain

Frontr = 27 Z (dFm+r)iI-rr;1_ir ( 7) (lca’] - {_”i[DBr] I-H} -

=0
But ’ -
1-n r-rn _ ¢ q4jipl-npr-rn _ p7-n [ Lr-rn +dFr-rn ) _ (-1)'D _n(Lr—rn - dFr-rn)
¢’ "a (-1)ip™" c ( o 7
= [-r;rn ( q _ (—1)iL _/_dFr-rn A
\ cl’ DI‘ 2 cn Dn
Therefore )

n
an+r = Z.n_7d_1 V‘ {dFm+r)’I-nm_j“f( 7 ) [‘f-rﬂ (_% - (_”I 7" )+0’F,-_,.n( —L" +(~7)’_]—'; ) ’
pird c D c D

Making the second set of substitutions we obtain

n
Lomtr = 2707 3 (L) (0 F o)™ ( 7 ) (600’17~ (~1)' =D ] ")
=0

n ) ) _
= 2 Y W e L ) (00T = (=10 =1) T 10T
=0

= 27 3 W L7 ) (10071 1) 10T
=0
But

i - " L - H ;i
c7—nar_rn+(_])’[]7 ”Br rn . -r-rn ( __7_ +(_])’_7 ) +dFr—r ( _7 _(_7)’_.7_ ) R
Therefore

" .
R i nei 7 i 1 1 gy L
Lty = 27" g (dF ) LT (7);[_r_m ( c_”+(_7)l?7)+dl:r_m( on ( ”ID" )g

EXAMPLE 2. Since
—(2B8™ - Yp,)

dXy = 2Adm - Y, and dXpm
it follows that

n n i .
adn Xy = 3 (V)24 (7) @ and A" = (<1)7 (= Yi)128)™ (7) g,

=0 ' i=0
Therefore

n o
kanX,';, +Xkdn+1Xg] = (—Ym}i{ZA)n—I/ n (Ymn—mi+k+den~mi+k)
\ 7
=0
and

n
Vied" X = Xd ™ Xy = (=1)" 35 (=Y (260" ] )( Ymn-mithk = IXmn-mitk) -
=0
Therefore
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n
XXy = =L 30 =1V} 2 T (1) Yot A7 = (=118 7) # X AT+ (=1)8 )]
24" 135

and

1

n
ViXi = o 3o (=12 () Y i (A" # (1078 X i (A" = (1)),
=0

Making the first set of substitutions we obtain

n
FkF,’;,' = _.._7_ Z (_ I)IL,/nzn—I< I’I ) [Lmn-—mi-l'k(c”_i _ {_ 7}nDﬂ—i} +dan—mi+k(Cn—i+ (_I)DDH-I.)]

20" !
and
n - . - - . . -
LkFr,;7 = ZdL" Z (_7)ILII712’H (7 ) [Lmn—mi+k(c”_l +(-1)"0"") +dan-mi+k(cn-l = (=1)"D")] .
i=0
Making the second set of substitutions we obtain
n

d2F, Ll = Z;F S (~1)(d%F )27 ( 7) [82F oy et (A" € (= 1) (=1) " g™~ pi)

=0

+ 0L it (d"C T — (=1)7 (1) g=i pn=i )]
so that .

n
Fell = 2_; D (dFp) 2™ ( ? )[dFm,,_,,,,-+k(u""+(—r/fc""l— Lon-misk(D™ = (=1)'¢" )]
=0

and
n - . . . . . . .
I.kL,’;; - ’77_'_7 Z (___ 7}I(d2Fm)12n—/ ( 7 ) [szmn—mi+k(dn_lcn_l _ (_ 7}"(_ ”n-/dn-/Dn—/}
2d =0
+ dLmn-—mi+k (dn-icn-—i + (_ 7}”{_ ”n—idn—iﬂn-i}]
so that

n
Lip =23 (dF,,,)"z"-"( 7)[L,,,,,_,,,,-+km"-f+(— 1€ ) = dF ik (0" = (=1)76" )]
=0
Further three term identities from which binomial identities may be derived in the way described are
dX, = Aa" - BB" ,
Y, = Aa" +Bg3" ,

(5) AT = X a™ T +g X, ga”
(6) Bﬁm-fn = Xmﬂn+1+l]X _7Bn )
a? = patq,
6% = pB+q,
(7) Y2 = d?XZ+4AB(~q) ,

Ad®™ = Y, 0™ - B(-g)" ,
Ad®™ = dX,a™ + Bl-q)™
BB?™ = ¥YB™ — Al~g)™ . BB2" = —dX,,87 + Al—g)™ .
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Most of these identities are obvious, or nearly so. ldentity (5) may be proved as follows:

AQ™ = BY Xy = Xy + 29X g +dX ) = X,,,( P;d) + X1 = Xon@F G Xt
and identity (6) is proved similarly. Identity (7) is proved as follows:

n 2
Y2= (Ad"+BB")? = (Ad" — BE") + 4AB(af)" = (a— )2 ( @a%gﬁ) +4AB(—q)" = d2X2 +4AB(—q)".
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ERRATA

Please make the following corrections to “Fibonacci Sequences Modulo M, appearing in the February 1974 (Vol.
12, No. 1) issue of The Fibonacci Quarterly, pp. 51—64.
On page 52, last line, last sentence, change “If 2/f(p),” to read “If 2)f(p).”

On page 53, change the fourth line of the third paragraph from “which (a,6,0¢) = 1,” to: “which (a,b,p%) #1.”

On page 56, third paragraph of proof, tenth line should read:
“ s given by 5% — 5262 _ 4.526-2 - 4. 52e-1

On page 61, change the second displayed equation to read:
2t
alk) = .0_/(:._7 .
Line 7 from the bottom should read:

“for i=t, -,e—1 "



