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1. INTRODUCTION 

Defining f/^fn;r,s) as the number of sequences of nonnegative integers 
(1.1) {a7,a2,-~,an} 
such that 
(1.2) -s < aj+1 -a,- < r (1<i<n-1), 

where r and s are arbitrary positive integers, and 

(1.3) a7 = /, an = k, 

the author [2] has shown that the generating function 
00 mm 4 n(r+s),j+nr\ 

<t>j,r,s(x-y) = E £ fj,j+nr-m(n + I'V^y™ 
n=0 m=0 

can be expressed in terms of generalized binomial coefficients cr+s(n,k) defined by 

/ .r*s \ n 

(1.4) E * * - £ cr+s(n,k)xk . 
\ h=0 ) k=0 

For the cases r=1 or s=1 we have explicit formulas for fji<(n;r,s), namely 

s-1 

cs+1(n + t,n + t-k)-X\{h + 1)cs+1(n + t,n+t - k-h-2) 
1 

(1.5) fj,k(n + 1;1,s)=Y,cs+1(-t-1,j-t) 
t=o 

and 
h=o 

k 

(1.6) fj/k(n+7;rJ) = Y^cr+lf-'t~^k-^ 

These formulas generalize a result of Carlitz [1] for r=s= 1. 
We now define an analog of cr+s(n,k), n > 0, by 

n I r+s \ n(r+s) 

(1.7) TI £ q(r-h»xh U £ Cr+s(n,k;q)x 
M\ h=0 J k=0 

Letting fk(m,n;r,s) denote the number of sequences of integers 

0<8) [ a 1 f a 2 f ' ' , a n } 
satisfying 
(1.9) -$ < a,+i-a; < r (1 <i<n-1) , 

where r and s are nonnegative integers, 

(1.10) a7 = 0, an = k 

and 

360 

r~7 
cr+1(n•f-tn-f-t-/)-J2(h + 1)cr+1(n + t,n + t-j-h-2) 

h=0 
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(1-11) E */ 
we show in this paper that 

n 

m 
i=1 

(1-12) cr+s(n,k;q) = J^ fnr-k(™, n + Vv)qm . 

From (1.12) we obtain a partition identity. 
2. COMBINATORIAL INTERPRETATION OF cr+s(n,k;q) 

From the definition of fk(m,n;r,s) it follows that 
(2.1) fk(m,l;r,s) = dk,0$m,0 
and 

r+s 

(2.2) fk(mtr) + 1;r,s) = ] T fk+s-h(m - k, w l • 
h=0 

Now (2.1) had (2.2) imply respectively 

(2.3) Y*fk(m<1;r's>clm = bk,0 
M 

and 
r+s 

(2.4) £ fk(m,n + 1; r,s)qm = ^ £ fk+s„h(m,n;r,s)qm+k . 

m h=0 m 
Let 

00 n(r+s) 

tfx>Y>'*> = Z Z E fnr-k(™,n + 1;r,s)qmxkyn . 
n=0 k=0 m 

Using (2.3) and (2.4) we get 
r+s °° (n+1)(r+s) I r+s \ 

<t>(x,y;q) - / ^ ^ j ; £ 5 ] fnr-k+h(m,n + Wig"*"***/ = 7 + W £ < T V <S>(xq1,yqr;q). 
h=0 n=0 k=0 m \ h=0 ) 

By iteration 
00 7 r+s \ °° n(r+s) 

#**-'*> = E n E ^ ' * * K = E E ^+s(nfk;q)xkyn . 
/?=0 y ; \ h=0 } n=0 k=0 

Equating coefficients we have 

(2.5) cr+s(n,k;q) = J^ fnr-k(mfn + t;r,s)qm . 
m 

1 APPLICATION TO PARTITIONS 
Assuming the parts of a partition to be written in ascending order, let ur(k,m,n) denote the number of partitions 

of m into at most n parts with the minimum part at most r, the maximum part k and the difference between 
consecutive parts at most r. Define vr(kfm,n) to be the number of partitions of m into k parts with each part at 
most n and each part occurring at most r times. We show that 
(3.1) ur(k,m,n) = vr(k,m,n) (n?1), 

Proof. It is easy to see that 
(3.2) ur(k,m,n) = fk(m,n + 1;r,0) . 
By (2.5) and (1.7) we have 

nr nr n [ r \ 

£ £ f«(m'n + 1;rf)qmJ = Y, cr(n,nr-k;qlS - I I £ qh'xh 

k=0 m k=0 j=1\ h=0 J 
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Thus the generating function for ur(k,m,n) is 

(3.3) n ( V <^V J . 
" \ ,=0 / 

But it is well known (see for example [3, p. 10] for r = 1) that the generating function for vr(k,m,n) is also (3.3). 
Hence we have (3.1). This identity is also evident from the Ferrers graph. 

To illustrate (3.1) and (3.2) let m = 7, n = 4, k = 3 and r = 2. The sequences enumerated by fs(7,5; 2,0) are 
0,0,1,3,3 , 0,0,2,2.3 and 0,1,1,2,3 . The function U2(3,7,4) counts the corresponding partitions, name-

ly 132, 223 and 1223. The partitions which 1/2(3,7,4) enumerates are 223, 132 and 124. From the graphs 

we observe that 132 is the conjugate of 223, 223 is the conjugate of 132 and 1223 is the conjugate of 124. 
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[Continued from page 354.] 
SPECIAL CASES 

Putting r= 1, s = 0, we obtain the generating function for the Fibonacci sequence (see [3] and Riordan [6]). Put-
ting r = 2, s = -1, we obtain the generating function for the Lucas sequence (see [3] and Carlitz [1]). 

Other results in Riordan [6] carry over to the //-sequence. The //-sequence (and the Fibonacci and Lucas se-
quences), and the generalized Fibonacci and Lucas sequences are all special cases of the ^sequence studied by the 
author in [4 ] . More particularly, 

\HB) = \wn(r,r+s;1,-1)\ 

and so 
\fn\ = \wn(1,1;1,-1)), \an\ = | wn(2, 1;1,-1)\ . 

Interested readers might consult the article by Kolodner [5] which contains material somewhat similar to that in 
[3 ] , though the methods of treatment are very different. 
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