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1. INTRODUCTION

The first congruence in this paper arose in an effort to extend a result of Collings [1] and the second congruence
is merely an elaboration of part of a theorem of Wall [5]. in the final section we look at some congruences modulo

m

Some of the symbols invelved are: O(m), the period of divisibility modulo m {or rank of apparition of m or entry
point of m), the smallest positive integer z such that £, =0 (mod m/ (see Daykin and Dresel [2]); Cfm/, the
period of cycle modulo m, the smallest positive integer & Fre, =F, (modm), n>0; T{m), the smallest positive

integer . F§+7 =1 (mod m). Infact, z2 = k. (See Wyler [6].)
Collings’ resuit was than when m is prime, 2 is even,

(1.1} Frt Fyoper = 0 (mod m),
where
Fn = Fn-7+Fn-2 {n >3}, F7 = F2 =17.
We show that m can be composite if F/25 = —7 (mod m).
2. LEMMAS

Lemma 2.1: (see Vinson [5].)

Far m > 2 D(m) is odd implies that 7fm) =4 and O(m) is even implies that 7{m} =17 or 2.

Proof: Simson’s relation can be expressed as
Fzz+1 = FproFzt (“’”z+2
=(-1)*"? since F,=0 (mod m),
7 {med m) i z=D(m) iseven,
=—7 fmod m) i z=D0(m isodd..

1

When
F2.; =1 (mod m),
T(m) =2 it FZ+7 == 7 (de m/,
Tim) =1 if Fyeg =1 (mod m).
When
F22+7 = -7 (mod m/,
Fy=1 (mod m) it m>2
50
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Fop7 = 21 (mod m).

F2?+1 = FZ1Fzer = —Fz7  (mod m);
Fie1 = [F24]% = 1 (mod m),
and
T(m) = 4
Lemma 2.2: Fxk-7 =1 {(mod m).
PI‘OOf.' Fr-1 = Fre1— Fg F1-0 (mod m)

mm

7 (mod m).

3. THEOREMS
Theorem 3.1: |f o#1 and FZ% = -1 (mod m), then
FrtFyozer =0 (mod m) forall r> 0.

Proof: ¢ = T(m) which takes only the values 7,2, 4 (Lemma 2.1). But ¢ # 7 (given). Therefore ¢ is even.
Therefare, Fz’/iQ, exists and is unique. Mareover,
Fugzir = FLa7F, (mod m) (see Eq. (8) of [4])
—F, (mod m) as FZY = -1
o Fo#Fygper =0 (mod m).

NOTE. (i) Conversely, if for ¢ #7 we are given that
FrtFygorr =0 (mod m),
for all r, this congruence must hold for r=1.

il

1= F1 = -F/2Q2+1 (de m}
—F +7F1 (mod m)
= _Fz+1

Hl

On the other hand, it is possible for
F * Fr0z+r
to be congruent to zero for some particular r without Fz+1 being congruentto —7. Thus, when m = 72,
Fio=144 =0 (mod 72) and 2z = 12
Foeg = Fi3=233=5 (mod 12)
Le=2
Fz+1 Fiz % —1 (mod 72) .

Despite this,
F3+Fyoze3 = F3+F15=2+610=612=0 (mod 12).

(i) When ¢ =7 the situation is very untidy. If z is odd, Fyq,+ does not exist. Even when z is even,
we have trouble with Fz+7 As ¢ = 1, Fz+7 =1 (mod m). Therefore

z+7 \/Fz+7 = \/7

(and possibly other values as well). —7 is always a possible value for Fz+7, but never the exclusive value.
(iii) Although —7 is always'a possible value for Fz %7 (e=1), itis not necessarily true that

Frt+Fyoer =0 (mod m) forall r>0.

Thus, when m = 4, z = 6.
ZFyg=1 (modm), :=e=1.

2 FtFyun=Fo+Fs=6=2 (mad 4).
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Theorem 3.2: Fo+(—1)"Fr., =0 (mod m).
Proof: ~Fr=0=Fg and Firy;=1=F; (mod m) by Lemma 2.2
~Fg2=—Fx+Fpq =Fg+F; =Fy (mod m).
It follows by induction on & that
(=1) " Fpep = (= 1) Frcpi # (~1) Fperag
=F,p+F_7 (mod m)

=F, (mod m/,
which gives the required result.
4. CONGRUENCES MODULO m?

Here we use the results (see Hoggatt [3])

(4.1) Frre1 = Fio-1)rFr* Fin-1)r+1Fre1
and
(4.2) Fone1 = FE+FPeg

If a(mod m)=F,.;=>5b(mod m?), then b is of the form Bm +a, forsome B. For example, F5=0(mod 5),
3(mod 5)=Fg=8(mod 52), and 8 = 1x 5+3
Using F, =0 (mod m) and (4.1) and (4.2) we find

Fo,e7 = FZr7 (mod m?) = b2 (mod m?),
and
F3z41 = Foye1Fyey (mod m?) = b3 (mod m?),

which, by the use of (4.1), can be generalized to
(4.3) Fppe7 = 5" (mod m?).
Furthermore, since F, = Am forsome A, then

Fooy =b—Am (mod m?)
and
Faz = FauqFyrt FzFzug
= (b — Am)Am +Amb (mod m?)
= 26Am (mod m?).
Also,

F3, = Foy_1Fy+ Fo,Fpyq  (from (4.1))
(b2 = 2bAm)Am +2bAm - b (mod m?)
= 36%Am  (mod m?) .

Similarly, Fg, = 46°Am  (mod m?). Thus
(4.4) Fpy = nb" " Am  (mod m?).
When F,,, =0 the congruence nb"~'A =0 (mod m) reducesto nA =0 (mod m), because, from (4.3) and (4.4),
if 5 and m have any factor in common, so have F,, and F,,+7, which is impossible as adjacent Fibonacci num-
bers are always co-prime. Thus, if we solve nA =0 (mod m) for n, then Z=nz gives that Fz which is zero (mod

2
m*).

Let us apply these methads to find which Fibonacci numbers are divisible by convenient powers of 10. Instead of
workina with m = 70, we shall find the equations simpler if we write 70=mq¢-m2, where my=2, m>=25, and
100=22.52 my=2,z=3, F3=1-2 andso A=1. The equation nA =0 (mod m) reducesto n=0 (mod 2J,
which gives n =2, so that Z=2z=6. Similarly with mo=15, z=15, and we find that Z = 5z=25.

If we take m;=4, z=6, Fg =2-4 andso A=2. Thus 2n =0 (mod 4) which gives n=2 and Z=2z=12.
Similarly, with mo =25, z=25 and Fog5= 75025 = 3001-25 which yields A=17 (mod 25). So n = 25
and Z =25z = 625.

il
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Relying on the known result that the period of divisibility by msm» (my,m5 co-prime) is given by O(mmo)=
LCM(z7,z2) (see Wall [6]), we get the results:
LCM(3,5) =15, and so Fg is the first Fibonacci number to be divisible by 10. /cm (6,25) = 150, and so F 59 is
divisible by 100. LCM(12,625) = 7,500 and so F 7500 is divisible by 707
This has been an exercise in finding the z numbers. By an extension of the argument we can produce the corres-
ponding k¥ numbers—the period of recurrence of the Fibonacci numbers (mod m2}.
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[Continued from page 350.]
[k/2] b ke _
= bk = — 1)
(5) Filx) Eg (e e (K77 ) qugpll-110)
=

Write
hilx) = (1 =agx +(=1)¥x2Jgylx)
(6) ; ek = llr—sbjal® + [(sa—rib]* .
Following Riordan [6], with ag=2 and hgfx)=1— x, we eventually derive
c7+5VEx = hylx)
co—x(2e + 552) = haolx) - 2e i‘flo(—)() —(ag+az)xgol—x) }
c3+ 55 x(3e +552) = hslx) - 39{ hel—x)—(ag +a3)xy1(—x)}
7 cq— x(262 + 205%¢ + 255%) = h4lx) — 4e ; hol—x) — (as+azlxgo(—x) }
+ 292{ holx) — (aq — ap)xgo(x) }
c5—eq = hglx)— 5e { h3(-x) —(az+ a5)xg3(—x}} + 532{ hylx) — (a5 — aﬂxg;(x)}
where ey = 2% — 5r%s + 30,252 — 40r%5° + 35rs% — 105°
Substituting values of ax = ak +b6%, we have
hilx) = /5 (r+sx)
halx) = 5(r? — s%x) — 10exgo(—x) .
(8) , h3lx) = 55 (r3 +s3x) — 15exg1(—x)
halx) = 25(r% = s%x) — 40exgo(—x) + 500 %xgolx)
hslx) = 25\5 (r® +s%x) — 75exg3(—x) + 125¢°xg 1 (x) .
These functions lead back to (2).

[Continued on page 362.]



