so that 428571 is a solution to our problem.

REFERENCES

1. M.S. Klamkin, "A Number Problem," The Fibonacci Quarterly, Vol. 10, No. 3 (April 1972), p. 324.
2. W. Page, "N-linked M-chains," Mathematics Magazine, Vol. 45 (March 1972), p. 101.
3. C.W. Trigg, "A Cryptarithm Problem," Mathematics Magazine, Vol. 45 (January 1972), p. 46.
4. J. Wlodarski, "A Number Problem" The Fibonacci Quarterly, Vol. 9 (April 1971), p. 195.

THE APOLLONIUS PROBLEM

CHARLES W. TRIGG

San Diego, California 92109

Problem 29 on page 216 of E.W. Hobson's A Treatise on Plane Trigonometry," Cambridge University Press (1918) reads: "Three circles, whose radii are a, b, c, touch each other externally; prove that the radii of the two circles which can be drawn to touch the three are

$$
a b c /[(b c+c a+a b) \pm 2 \sqrt{a b c(a+b+c)}] . "
$$

Horner [1] states "The formula...is due to Col. Beard" [2]. That the formula is incorrect is evident upon putting $a=b=c$, whereupon the radii become $a /(3 \pm 2 \sqrt{3})$, so that one of them is negative. Horner recognized this when he stated, "The negative sign gives R (absolute value)...".

The correct formula has been shown [3] to be:

$$
a b c /[2 \sqrt{a b c(a+b+c)} \pm(a b+b c+c a)] .
$$

REFERENCES

1. Walter W. Horner, "Fibonacci and Apollonius," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 541542.
2. Robert S. Beard, "A Variation of the Apollonius Problem," Scripta Mathematica, 21 (March, 1955), pp. 46-47.
3. C.W. Trigg, "Corrected Solution to Problem 2293, School Science and Math., 53 (Jan. 1953), p. 75.
