no recurrence (except the identity recurrence (F_{n}) has a norm dividing p. We shall proceed by induction.
For $k=1$, the theorem is obviously true. Assume truth for all exponents not greater than k. Then there are two recurrences of norm p^{k} which factor uniquely, and since $\left(A_{n}\right)^{k}$ and $\left(A_{n}^{*}\right)^{k}$ are factorizations of the recurrences of norm p^{k}, they are unique factorizations. Multiplying $\left(A_{n}\right)^{k}$ and $\left(A_{n}^{*}\right)^{k}$ by each of the recurrences of norm p and using (7), we get the products

$$
\left(A_{n}\right)^{k+1}, \quad\left(A_{n}^{*}\right)^{k+1}, \quad\left(A_{n}\right)^{k}\left(A_{n}^{*}\right)=N(A)\left(A_{n}\right)^{k-1}, \quad \text { and } \quad\left(A_{n}^{*}\right)^{k}\left(A_{n}\right)=N(A)\left(A_{n}^{*}\right)^{k-1},
$$

and the last two products fail to satisfy the requirement that the terms have no common factor. Thus, $\left(A_{n}\right)^{k+1}$ and $\left(A_{n}^{*}\right)^{k+1}$ are two factorizations of recurrences of norm p^{k+1}, and they are the only two meeting the requirement that the terms of the product have no common factor. Since there are two recurrences of norm p^{k+1} (see [2]), $\left(A_{n}\right)^{k+1}$ and $\left(A_{n}^{*}\right)^{k+1}$ must be their factorizations. This completes the proof.

REFERENCES

1. Brother U. Alfred, "On the Ordering of Fibonacci Sequences," The Fibonacci Quarterly, Vol. 1, No. 4 (December, 1963), pp. 43-46.
2. T.W. Cusick, "On a Certain Integer Associated with a Generalized Fibonacci Sequence," The Fibonacci Quarterly, Vol. 6, No. 2 (April, 1968), pp. 117-126.
3. P. Naor, "Letter to the Editor," The Fibonacci Quarterly, Vol. 3, No. 4 (December, 1965), pp. 71-73.
4. Dmitri Thoro, "An Application of Unimodular Transformations," The Fibonacci Quarterly, Vol. 2, No. 4 (December, 1964), pp. 291-295.
5. Oswald Wyler, "On Second-Order Recurrences," American Math. Monthly, 72 (1965) pp. 500-506.

*

A NOTE ON FERMAT'S LAST THEOREM

DAVID ZEITLIN
 Minneapolis, Minnesota

In this note, n, m, x, y, and z are all positive integers, with $x<y<z$.
Theorem 1. For $n \geqslant 2$, the equation $x^{n}+y^{n}=z^{n}$ has no solutions whenever $x+n y \leqslant n z$.
Corollary. For $m \geqslant 1$ and $n \geqslant 2, x^{m n}+y^{m n}=z^{m n}$ has no solutions whenever $x^{m}+n y^{m} \leqslant n z^{m}$.
Proof. Sppose $x^{n}+y^{n}=z^{n}$ has a solution with $y=x+a, z=x+b$, where $b>a>0$ are integers. Then, by using the binomial theorem, we have

$$
x^{n}=z^{n}-y^{n}=(x+b)^{n}-(x+a)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i}\left(b^{i}-a^{i}\right)=n x^{n-1}(b-a)+Q(n, x, b, a), \quad a>0 .
$$

Thus

$$
x^{n-1}(x-n(b-a))=0,
$$

and so $x-n(b-a)>0$ is a necessary condition for a solution. Since

$$
b-a=(x+b)-(x+a)=z-y, \quad x-n(z-y) \leqslant 0
$$

is the stated result.
REMARKS. Since $n z<n y+x$ is a necessary condition for a solution and since $y<z$, we see that
[Continued on Page 402.]

