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H-245 Proposed by P. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove the identity 

" x<M*k-V
 2 " ^ ! (1+Xf) 

> * = _ r ~ 7 n = 1 2 — 
£-> MkMn.k M„ ' ''z' ' 
k=0 

where 
Mn = (]-x)(1-x2)(1 -x3) - (1 ~xn), n = 1,2, •••; (x)0 = 1 . 

H-246 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 
m n 

F(m,n) = 2^ 2^ Fj+jFm-j+jFj+ll„jFmmj+n-.j 
i=0 j=o 

m n 

1=0 to 
Show that 

L(m,n)-25F(m,n) = 8Lm+nFm+1Fn+1 . 

H-247 Proposed by G. Wulczyn, Buckneli University, Lewisburg, Pennsylvania. 

Show that for each Fibonacci number Fr, there exist an infinite number of positive nonsquare integers, D, such 
that 

F%s-F?0=1. 

H-248 Proposed by F.D. Parker, St. Lawrence University, New York. 

A well known identity for the Fibonacci numbers is 

and a less well known identity for the Lucas numbers is 

Ln- Ln„1Ln+1 = 5(-1)n . 
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More generally, if a sequence | yg, y^, — t satisfies the equation 

Yn = Yn-1 +Yn-2 . 

and if yQ and / / are integers, then there exists an integer N such that 

Yn-Yn-lYn+1 = N(-1)n . 
Prove this statement and show that N cannot be of the form 4k+2, and show that 4N terminates in 0,4, or i 

SOLUTIONS 

SUIVf SEQUENCE 

H-216 Proposed by GuyA.R. Guillotte, Cowansville, Quebec, Canada. 

Let Gm be a set of rational integers such that 
oo I / <x 

Find a formula for 
n=1 \m=0 ^0 MHF2nH)mj 

_ 7T 

4 

'm> 

Solution by L Car/itz, Duke University, Durham, North Carolina. 

Put 

Then, by differentiation 

oo 

narctan x V ^ n Xm r - r - i 
e = zLr Gm -^(< G0 ~ G7 - 7 

m=0 m=0 

oo 

.arctan x _ / f , v 2 i \~^ r 
~ " X ' 2-J

 Gm+1 

m=0 

X^_ 

mi 

so that 
®m = Gm+i+m(m - i)Gm„i (m 

It follows that the Gm are rational integers. 
Consider 

> 1) . 

S^y"/og 
n=1 

um 

Since 

lm=0 m!F2n+1 

1 
arctan ~— 

n=1 

exp [ arctan — ] 
\ F2n+1 I 

= }£ arctan -= 
~ F2n+1 
n=1 

it follows that 

' -arctan ~ L - = arctan I / ^ ' ^ \ , m m 1 
f'2n r2n+2 \^2nr2n+1 + i l l~2n+1 

OO 

E arctan - = arctan — = arctan 1 = % . 
F2n+1 F2 4 

n— i 

Hence S = n/4. 
To get an explicit formula for Gm we proceed as follows. Put 

x = tanu = L - — = f- — 
I in —In I Oil I eiu + e-'u 

that is, 

e-iu _ j e2iu_j ^ _ 1 + ix 

e-iu i B2iu+1' 1-ix ' 
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21 arctan x 1 + ix 
1-ix • 

Thus 

earctanx . ( / ± | [ ) ' * ' ' _ (i+W™(1 - ix} *» 

-t{-?)M't (7) HW'- E/-V" £ M;« (-f)(f) 
It follows that 

£ '-"s (T) (?) 
r+s=m 

(-1)m J ] ( ^ ) (%i)(%i+1)-(%i + r-1)(%i)(%i-1) •••(%!-s+1). 

r+s=m 

A simpler formula for ^ m would be desirable. 

Also partially solved by P. Bruck man. 

PRIIVIE ASSUMPTION 

H-217 (corrected) Proposed by S. Krishnan, Orissa, India. 

(a) Show that 

04n-4x-4 i2;:?) - (V-?r?) (™d4n+D, 
where /? is a positive integer and -1 <x <2n - 1, x is an integer, and 4n + 1 is prime. 

(b) Show that 

24n-4x-6 I2x^4y i4n-Jx-2^ ^Q (mod 4n + 3) , 

where /? is a positive integer, -2 <x <2n - /, x is an integer, and 4n + 3 is prime. 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

Assertions (a) and (b) are false for general n; we may make them true assertions by adding the hypothesis that 
4n + 1 is prime, for part (a), and 4n + 3h prime, for part (b). We may combine the two assertions as follows: 

If p is a positive odd prime and x is an integer with Q <x <1Mp - 1), then 

**-'-*(?) =^MP-1) fe^x) <««">• 
The following lemma is useful in the proof: 

Lemma. If p is an odd prime, then 

iy.f-1 I P-1 \ _ 1-3-5 -(p -2) _ ( j,x(p-t) ( d i 
w" \%(p - 1)) 2-4-6 -(p -1)~' ' ' PJ ' 

Pi-oof. 
1-3-(p-2) = 1232-(p-2)2

 = 1.3.-(p-2)(-2)(-4)...(1-p) , d , 
2-4-(p-1) (p-1)! ~ (p-1)! <m°a P> 

m (_1tH(p-n j j ^ / (md pj m (_1}%(p-n (md ph 

as asserted. 
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Now, let 
/ / = oP-1-4x I2x\ v = I p-1 -2x\ 
U Z \x) ' V \%(p-1)-x) > 

where p and x are as stated above. Thus, 
u = 9P-1-2X ( h3-(2x- 1) I y = 9p-l~2x l h3-(p-2-2x) I 
U Z I 2-4-~(2x) * ' I 2*4-(p-1-2x)f 

Therefore, 
v = 2P-1-2X C (-2x-2)(-2x-4)~(-p + 1) I ( d , = 2p-U2x | (2x + 2)(2x + 4)..-(p-H > ( d . 
v - ' \(-2x-1)(-2x-3):.(-p+2) \ { m o a V - z \ (2x+1)(2x + 3)-(p-2)Sim0a P)-

Since all the factors in the last expression are relatively prime to p, V^O (mod p); therefore, V~1 exists, and 

UV1 = 2P'1'2X J 1-3.~(2x-J)(2x+1)(2x + 3)...(p-2) ) ( d . 
U ~ 2p-t-2x I 2-4 -(2x)(2x + 2)(2x + 4) .» (p-1) f (m°a Pi ' 

Thus, 

UV'1 = $Z((P
pZ

2/) (mod p) s (-V1/2(p~7) (mod p) , 

by the lemma. Therefore, 

U = (-1)*(P-1}V (mod p) , 

which is equivalent to our assertion. 

Also solved by P. Tracy. 

STAGGERING PASCAL 
H-218 Proposed by V.E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Let 

riXn 

represent the matrix which corresponds to the staggered Pascal Triangle and 

7 / 1 1 .» 
12 3 4 -
1 3 6 10 ••• 

nXn 

represent the matrix which corresponds to the Pascal Binomial Array. 
Finally let 

' 1 1 1 1 
12 3 4 -

c ~ I 2 5 9 14 

nXn 

represent the matrix corresponding to the Fibonacci Convolution Array. Prove A -B = C. 
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Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

Presumably, the matrix A should look as follows: 
f1 0 0 0 ...N 
0 10 0 
0 110 
0 0 2 1 -

By inspection, or otherwise, we obtain the formulas 

(1) a,j = ttzj) > f o r i<i<2j-1; a,j = 0 otherwise 

Let D =AB. Then, 

««- E (f-/)(^72) • 
k=1+[%i] 

For convenience, let / - 1 = r and / - 1 = a; also, Set rn-i-k. Then, 

' * - » « - E {r-m
m) {r+7m) 

m=0 

Now, let 
oo oo 

'/M - E V ^ ' E *"*'' 
i=1 r=0 

then fj(x) is the generating function for the j t h column of D. 
Thus, 

[%r] 

' A ' - E ' E (r-m
m) (r+

r--m
m) = E * 2 m E ( / r ) [r+A+

m
m)*r 

r=0 m=0 m=0 r=0 
oo oo oo oo 

- E ^ E ( s r ) {r+sr)xr-E (-s-1) <-*2>mi: (•*-?-') <-*>r 

m=0 r=0 m=0 r=0 

m=0 

i.e., 
fj(x) = (1-x-x2fJ . 

Since 
fj(x) = (1-x-x2r , 

the familiar generating function for the Fibonacci numbers, fj(x) is the column generator for the Fibonacci convolu-
tion matrix, i.e., C. Thus, D = AB = C. 

Also solved by the Proposer. 


