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1. A COMBINATORIAL APPROACH 

In [3 ] , the nonzero coefficients of the Chebyshev polynomials Tn{x):=cosndr cos0=x, which satisfy the recur-
rence relation Tn+i(x) = 2xTn(x)-Tn..i(x) since cos(n+ 1)Q + cos(n - 1)6-2cosQcosnQ, are arranged in 
left-adjusted triangular form. The first seven rows of the array are 
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Furthermore, letting an^ be the element in the nth row and kth column, it is shown in [3] that 

an,k (~ir n-k 
k 

7n-2k-1 (1.1) 

and 

0-2) anfk
 = 2an~1fk~an-2fk-1 • 

In this section, we discuss several linear recurrences which arise as a result of a careful examination of the triangu-
lar array. The validity of these linear recurrences is established by means of common combinatorial identities. 

Summing along the rising diagonals, we obtain the sequence 1, 1,2, 3, 5, 8, 13, •••, which appears to be the sequence 
of Fibonacci numbers. To show that this is in fact the case, we first observe that the sum of the nth rising diagonal 
is given by 

/, n = 1 or 2 
M 

/] an-k-1,k. 
k=0 

(1.3) M [4-'' n>3 . 

We now verify that fn = fn-j + fn-2 for n > 3. 
In [2 ] , we find the following combinatorial identities 

(1.4) 
( : ) - ( " . - ' ) • ( : : 

and 
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Using (1.1) together with (1.3) and applying (1.5) and then (1.4) twice, we have, 
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Since the first and last terms cancel for successive integral values in the last sum, and because 

n-4 < n- 1 < 3M implies that n -2M-4 < M, 

the last sum has value zero so that 

(1-7) fn = fn-1 + fn-2. n>3. 

The sequence of the sums of the rising diagonals in absolute value, denoted by j un I °°=1, is 1,1^,5,11,24,53, • 
and it appears to satisfy the recurrence relation 

(1.8) u1=u2=h u3 = 2, 2un-1 + un-3 = un, n>4. 

By the definition of un , (1.1), and (1.3), we see for n >4, following an argument similar to that of (1.6), that, 
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and (1.8) is proved. 
Let wn be the sum of the terms along the nth falling diagonal. The terms of 1 wn \°^=1 appear to be given by 

(1.10) wn = i ;- n==1 . 
\ 0, n>2 

To show that wn = 0 for n > 2, we observe that 

»n - S *n*-1M - £ (-»'\( -k ') * ( JI? )] *"** 
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2 2 ° 
and (1.10) is proved. 

Letting qn be the sum of the absolute value of the terms along the ntn falling diagonal, we see that the terms of 
iqn l™=1 are /, 2, 6, 18, 54, 162, 486, — and it appears as if we have 

(1.12) Hi>-2^7-
By the definition of qn and (1.11), we have 

n-1 n-1 n-2 
n-1) 9n-k-1 , y V * [ n-2 \ 0n-k-2 
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so that (1.12) is true. 
It is easy to determine the row sum rn because, as is pointed out in [3 ] , the sums are all one since cos nO = 1. The 

last sequence of this section, denoted by j pn I °° - , deals with the sums of the absolute values of the terms of the 
rows, and the first few terms of the sequence are 1, 1, 3, 7, 17,41,91, - . It appears as if we have 

(1.14) P1=P2=I Pn = 2pn-.1+pn-2, ">3, 

which is a generalized Pell sequence where the Pell numbers Pn are given by the recurrence relation 

(1.15) P1 = 1, P2 = 2, Pn = 2Pn-1+Pn-2, n>3. 

The first few terms of the sequence are 1,2, 5, 12,29, 70, 169, - . Letting P_/ = 7 and PQ = 0, it is easy to establish 
by mathematical induction that 
(1-16) pn = Pn-1

+Pn-2 = Pn-Pn-1 
and 

n 

< 1 - 1 7 > Pn = £ Pn • 
!=1 

To verify (1.14), we use (1.2) and observe that 

(1.18) \anrk\ = 2\an-1tk\ + \an-2,k-i\ 
so that with N = [n/2], we have 

N N N N-1 
( U 9 ) Pn = 1 C \a"*\ = 2 J ] \an-1,k\ + J2 \an-2,k-l\ = 2Pn-1+J2 \a"-2,k\' 

k=0 k=0 k=0 k=Q 

However, \an-2fN | = 0 because n - 2 < n < 2N implies that n - 2 - N <N. Hence, 
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(1.20) Pn=2Pn-1+Pn-2' 
2. GENERATING FUNCTIONS 

In a personal correspondence, V.E. Hoggatt, Jr., pointed out that the relationships of Section 1 could be estab-
lished by means of generating functions. 

Let GfcM be the generating function for the kth column. Following standard techniques, it is easy to show that 

(2.1) Gofx) = ±f± 

and, with the aid of (1.2) that 

(2.2) GkM = Z^M 

Employing mathematical induction together with (2.1) and (2.2), we have 

(2.3) ff,W-(_zi_)*(i££), k>0. 

Adding along the rising diagonals is equivalent to 

£*»«.w-z:(£*)(7^'' 
k=0 k=0 

{2A) - ( t - x \ . t 1 + ** 

= (1-x-x2)'1 . 

Since , 
(1-x-x2) 

is the generating function for the Fibonacci sequence, we have an alternate proof of (1.7). 
Letting 

*» • xmw • 
we see that adding along rising diagonals with ail signs positive is equivalent to 

*3 1-x 

which verifies (1.8) since (1 -x)(1 ~2x - x3) is the generating function for I un\°°:s1 

To verify (1.10) and (1.12), we recognize that 

(2-7) ^ ^ - - ( i ^ ) ^ , , - ^ ) - - , 
k=0 

where 1 is the generating function for | wn J-~ while 

E"*«««-(££)'('-7d! (2 8) ^ ^ »K^*f~\ - / i—x \ . i 1 x \ _ 1—x 
2x ) 1 -3x ' 

k=0 

where (1 -x)(1 -3x)~1 is the generating function for |<7nr~ = ; • 
Since 

k=0 

we have an alternate proof that the row sums are ail one. Furthermore, 
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(2.10) £*»«f«-(£*M'-r? 
k=0 

2x 
1-x 

1-2x-x* 

where (1 -x)(l - 2 x -x2) is the generating function for | Pn\^=r Hence, we have an alternate proof of (1.14). 
Sn conclusion, we note that 

(2.1D £ /> „_ , * "+£ />" 
n=0 n=0 

1-2x 

1-2x-x2 1-2x-x2 1-2x-x* 
-Z> 'n+1* 

n=0 

and we have a generating function proof of (1.16). 
3. AWOTHER ARRAY 

If we let 

and use 

we see that 

Q„M = M , x = cosd, 
sin 6 

sin (n + 1)6 + sin (n - 1)6 = 2 cos 6 sin n6 

Qn+1 (x) = 2xQn (x) - Qn.; (x) 

and Qn(x) is a polynomial in x. 
The first eight rows of the nonzero coefficients of the polynomials Qn(x) in left-adjusted triangular form are 
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Letting hn^ be the element in the nth row and k column, it can be shown, as in [3], that 

bn,k = 2bn-1,k-bn-2,k~1 (3.1) 
and 
(3.2) b„ik = (-1)k{j,-k

k-
1)2n-2k-1 . 

The six linear recurrences of Section 1, relative to the Qn(x) array, are 
(3.3) F1 = 1, F2 = 2, Fn = Fn-t + Fn-2+1, n>3 

(3.4) U1 = 1, U2 = 2, U3 = 4, Un= 2Un„1 + Un.3f n>4 

(3.5) Wn = I n > 1 

(3.6) Qn = 3n-1, n>1 

(3.7) Rn
 = n, n> 1, 

and 
(3.8) Pj = 1, P2 = 2f Pn= 2Pn„1+Pn„2, n>3 

which is the sequence of Pell numbers given in (1.15k 
The preceding six linear recurrences can be verified by using combinatorial arguments like those of Section 1 or by 

means of generating functions as in Section 2 where the column generators of the Qn(x) table are given by 

(3.9) 

and 

Hk(x) = 1 -1 
1 ~2x \ 1-2x 

k>0 
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(3.10) *.w._J_(_f_1*. k>0 

if we want all positive values. Hence, the details are omitted. 
4. CONCLUDING REMARKS 

Equations (1.16) and (1.17) relate the sequences of (1.14) and (3.8). Similar relationships, which can be proved 
by mathematical induction, also hold for the other five recurrences. That is, 

n 

(4.1) fn = Fn-Fn-l and Fn = Yifi 
i=1 

n 

(4.2) Un=un-Un_7 and Un = J^ Uj 

i=1 

n 

(4.3) wn = Wn-Wn-j and Wn = £ ] ws 

i=1 

n 

(4.4) qn = Qn-Qn„7 and Qn = ] T </, 
i=1 

n 

(4.5) rn = Rn-Rn^ and Rn = ] T r, • 
i=l 

Since Eq. (3.9) is (1 - x)~1 times Eq. (2.3), it can be shown that the entries in the Qn(x) table are partial sums 
of the column entries of the Tn(x) table. Hence, 

W-6> bn+2k,k = Z^ aj+2k,k 
i=o 

which gives rise to the combinatorial identity 

J=0 

An interesting consequence of (4.6) since the bn ̂  and an ̂  are respectively the coefficients of the polynomials 
Qn(x) andTn(x) is the identity 

(4.8) T cosn-i6cosje = sin(n+J)d . 
L^d sm Q 
ro 
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